"Appell-Lerch sums"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 하나는 보이지 않습니다)
14번째 줄: 14번째 줄:
 
* Zwegers used them to show that mock theta functions are essentially mock modular forms.
 
* Zwegers used them to show that mock theta functions are essentially mock modular forms.
 
* The Appell–Lerch series is
 
* The Appell–Lerch series is
$$
+
:<math>
 
\mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}
 
\mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n}
$$
+
</math>
 
where
 
where
 
:<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
 
:<math>\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}</math>
22번째 줄: 22번째 줄:
 
:<math>\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math>
 
:<math>\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}</math>
 
===completion by adding a non-holomorphic part===
 
===completion by adding a non-holomorphic part===
* definte $\hat\mu(u,v;\tau)$ by
+
* definte <math>\hat\mu(u,v;\tau)</math> by
 
:<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
 
:<math>\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2</math>
 
where
 
where
 
:<math>R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
 
:<math>R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}</math>
and $y=\Im(\tau)$ and
+
and <math>y=\Im(\tau)</math> and
 
:<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
 
:<math>E(z) = 2\int_0^ze^{-\pi u^2}\,du</math>
  
32번째 줄: 32번째 줄:
 
===Mordell integral===
 
===Mordell integral===
 
* [[Mordell integrals]]
 
* [[Mordell integrals]]
$$
+
:<math>
 
\mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau)
 
\mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau)
$$
+
</math>
 
where  
 
where  
$$M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx$$
+
:<math>M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx</math>
* non-holomorpic part is an incomplete period integral of the modular form $\eta^3$
+
* non-holomorpic part is an incomplete period integral of the modular form <math>\eta^3</math>
$$
+
:<math>
 
iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz
 
iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz
$$
+
</math>
 
* property
 
* property
$$
+
:<math>
 
R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau)
 
R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau)
$$
+
</math>
  
  
57번째 줄: 57번째 줄:
 
===special case===
 
===special case===
 
* mock theta function
 
* mock theta function
$$
+
:<math>
 
\mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}}
 
\mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}}
$$
+
</math>
 
* Mordell integrals
 
* Mordell integrals
$$
+
:<math>
 
\mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx
 
\mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx
$$
+
</math>
  
 
* completion
 
* completion
$$
+
:<math>
 
\hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2
 
\hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2
$$
+
</math>
 
* modularity
 
* modularity
$$
+
:<math>
 
\hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau)
 
\hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau)
$$
+
</math>
  
 
==higher level Appell function==
 
==higher level Appell function==
123번째 줄: 123번째 줄:
 
[[분류:mock modular forms]]
 
[[분류:mock modular forms]]
 
[[분류:math]]
 
[[분류:math]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 09:49 기준 최신판

introduction

  • one way to construct mock theta functions
  • characters of representations in (nonrational) conformal field theory models based on Lie superalgebras\
  • 3rd order mock theta functions



Appell-Lerch sum

  • Appell–Lerch sums were first studied by Paul Émile Appell (1884) and Mathias Lerch (1892).
  • Watson studied the order 3 mock theta functions by expressing them in terms of Appell–Lerch sums
  • Zwegers used them to show that mock theta functions are essentially mock modular forms.
  • The Appell–Lerch series is

\[ \mu(u,v;\tau) = \frac{i a^{1/2}}{\theta_{11}(v;\tau)}\sum_{n\in Z}\frac{(-b)^nq^{n(n+1)/2}}{1-aq^n} \] where \[\displaystyle q= e^{2\pi i \tau},\quad a= e^{2\pi i u},\quad b= e^{2\pi i v}\] and \[\theta_{11}(v,\tau) = \sum_{n\in Z}(-1)^n b^{n+1/2}q^{(n+1/2)^2/2}\]

completion by adding a non-holomorphic part

  • definte \(\hat\mu(u,v;\tau)\) by

\[\hat\mu(u,v;\tau) = \mu(u,v;\tau)-R(u-v;\tau)/2\] where \[R(z;\tau) = \sum_{\nu\in \mathbb{Z}+1/2}(-1)^{\nu-1/2}[{\rm sign}(\nu)-E\left((\nu+\frac{\Im(z)}{y})\sqrt{2y}\right)]e^{-2\pi i \nu z}q^{-\nu^2/2}\] and \(y=\Im(\tau)\) and \[E(z) = 2\int_0^ze^{-\pi u^2}\,du\]


Mordell integral

\[ \mu(u,v;\tau)+\sqrt{\frac{i}{\tau}}e^{\pi i \frac{(u-v)^2}{\tau}}\mu(\frac{u}{\tau},\frac{v}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(u-v;\tau) \] where \[M(v;\tau)=\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2-2\pi v x}}{\cosh (\pi x)} dx\]

  • non-holomorpic part is an incomplete period integral of the modular form \(\eta^3\)

\[ iR(0;\tau)=\int_{-\bar{\tau}}^{i\infty}\frac{\eta(z)^3}{\sqrt{\frac{z+\tau}{i}}}\,dz \]

  • property

\[ R(z;\tau)+\sqrt{\frac{i}{\tau}}R(\frac{z}{\tau};-\frac{1}{\tau})=M(z;\tau) \]


modularity

\[\hat\mu(u+1,v;\tau) = a^{-1}bq^{-1/2}\hat\mu(u+\tau,v;\tau) = -\hat\mu(u,v;\tau),\] \[e^{2\pi i/8}\hat\mu(u,v;\tau+1) = \hat\mu(u,v;\tau) = -(\tau/i)^{-1/2}e^{\pi i (u-v)^2/\tau}\hat\mu(u/\tau,v/\tau;-1/\tau).\]

  • In other words the modified Appell–Lerch series transforms like a modular form with respect to τ.
  • Since mock theta functions can be expressed in terms of Appell–Lerch series this means that mock theta functions transform like modular forms if they have a certain non-analytic series added to them.


special case

  • mock theta function

\[ \mu(z;\tau):= \mu(z,z;\tau)= \frac{i e^{\pi i z}}{\theta_{11}(z;\tau)}\sum_{n\in Z}\frac{(-1)^nq^{n(n+1)/2}e^{2\pi i n z}}{1-q^ne^{2\pi i z}} \]

  • Mordell integrals

\[ \mu(z;\tau)+\sqrt{\frac{i}{\tau}}\mu(\frac{z}{\tau};-\frac{1}{\tau})=\frac{1}{2}M(0;\tau)=\frac{1}{2}\int_{-\infty}^{\infty} \frac{e^{\pi i \tau x^2}}{\cosh (\pi x)} dx \]

  • completion

\[ \hat{\mu}(z;\tau)=\mu(z;\tau)-R(0;\tau)/2 \]

  • modularity

\[ \hat{\mu}(\frac{z}{\tau};\frac{-1}{\tau})=-\sqrt{\frac{\tau}{i}}\hat{\mu}(z;\tau) \]

higher level Appell function

  • higher-level Appell functions
    • a particular instance of indefinite theta series



history



related items


encyclopedia



articles