"Quadratic forms over p-adic integer rings"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (Pythagoras0 사용자가 Diagonalization over p-adic integers 문서를 Quadratic forms over p-adic integer rings 문서로 옮겼습니다) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * Hilbert symbol | ||
+ | * Hasse invariant | ||
+ | $ | ||
+ | \newcommand\Zp{\Z_p} | ||
+ | \newcommand\Qp{\Q_p} | ||
+ | \newcommand\Qpx{\Qp^\times} | ||
+ | \newcommand\GL[2]{\operatorname{GL}_{#1}(#2)} | ||
+ | \newcommand\GLnZ{\GL n\Z} | ||
+ | \newcommand\GLnZp{\GL n{\Zp}} | ||
+ | \newcommand\Znn{\Z_{\ge0}} | ||
+ | \newcommand{\ord}[2]{{\rm ord}_{#1}(#2)} | ||
+ | \newcommand\inv{^{-1}} | ||
+ | $ | ||
+ | |||
+ | |||
+ | |||
+ | ==Hilbert symbol== | ||
+ | * For $a,b\in\Qpx$ the Hilbert symbol $(a,b)_p$ is $1$ if $aX^2+bY^2=Z^2$ has nontrivial | ||
+ | solutions in $\Qp^3$ and $-1$ if not. | ||
+ | |||
+ | |||
+ | |||
+ | ==Hasse invariant== | ||
+ | * For $u\in\GL m\Qp^{\rm sym}$ the Hasse invariant of $u$ is $h_p(u)=\prod_{i\le j}(a_i,a_j)_p$ where | ||
+ | $u$ is $\GL m\Qp$-equivalent to the diagonal matrix having entries $a_1,\cdots,a_m$. | ||
+ | |||
+ | |||
+ | |||
==computational resource== | ==computational resource== | ||
* https://drive.google.com/file/d/0B8XXo8Tve1cxTERFcHVSQnpKUFU/view | * https://drive.google.com/file/d/0B8XXo8Tve1cxTERFcHVSQnpKUFU/view |
2018년 2월 14일 (수) 19:40 판
introduction
- Hilbert symbol
- Hasse invariant
$ \newcommand\Zp{\Z_p} \newcommand\Qp{\Q_p} \newcommand\Qpx{\Qp^\times} \newcommand\GL[2]{\operatorname{GL}_{#1}(#2)} \newcommand\GLnZ{\GL n\Z} \newcommand\GLnZp{\GL n{\Zp}} \newcommand\Znn{\Z_{\ge0}} \newcommand{\ord}[2]{{\rm ord}_{#1}(#2)} \newcommand\inv{^{-1}} $
Hilbert symbol
- For $a,b\in\Qpx$ the Hilbert symbol $(a,b)_p$ is $1$ if $aX^2+bY^2=Z^2$ has nontrivial
solutions in $\Qp^3$ and $-1$ if not.
Hasse invariant
- For $u\in\GL m\Qp^{\rm sym}$ the Hasse invariant of $u$ is $h_p(u)=\prod_{i\le j}(a_i,a_j)_p$ where
$u$ is $\GL m\Qp$-equivalent to the diagonal matrix having entries $a_1,\cdots,a_m$.