"Quadratic forms over p-adic integer rings"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
30번째 줄: 30번째 줄:
  
 
[[분류:quadratic forms]]
 
[[분류:quadratic forms]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 08:42 판

introduction

  • Hilbert symbol
  • Hasse invariant

$ \newcommand\Zp{\Z_p} \newcommand\Qp{\Q_p} \newcommand\Qpx{\Qp^\times} \newcommand\GL[2]{\operatorname{GL}_{#1}(#2)} \newcommand\GLnZ{\GL n\Z} \newcommand\GLnZp{\GL n{\Zp}} \newcommand\Znn{\Z_{\ge0}} \newcommand{\ord}[2]{{\rm ord}_{#1}(#2)} \newcommand\inv{^{-1}} $


Hilbert symbol

  • For $a,b\in\Qpx$ the Hilbert symbol $(a,b)_p$ is $1$ if $aX^2+bY^2=Z^2$ has nontrivial

solutions in $\Qp^3$ and $-1$ if not.


Hasse invariant

  • For $u\in\GL m\Qp^{\rm sym}$ the Hasse invariant of $u$ is $h_p(u)=\prod_{i\le j}(a_i,a_j)_p$ where $u$ is $\GL m\Qp$-equivalent to the diagonal matrix having entries $a_1,\cdots,a_m$.

computational resource