"Delta potential scattering"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
*  Let the potential is given by <math>V(x) = \lambda\delta(x)</math><br><math>\psi(x) = \begin{cases} \psi_{\mathrm L}(x) = A_{\mathrm r}e^{ikx} + A_{\mathrm l}e^{-ikx}, & \text{ if } x<0; \\ \psi_{\mathrm R}(x) = B_{\mathrm r}e^{ikx} + B_{\mathrm l}e^{-ikx}, & \text{ if } x>0, \end{cases}</math><br>
 
*  Let the potential is given by <math>V(x) = \lambda\delta(x)</math><br><math>\psi(x) = \begin{cases} \psi_{\mathrm L}(x) = A_{\mathrm r}e^{ikx} + A_{\mathrm l}e^{-ikx}, & \text{ if } x<0; \\ \psi_{\mathrm R}(x) = B_{\mathrm r}e^{ikx} + B_{\mathrm l}e^{-ikx}, & \text{ if } x>0, \end{cases}</math><br>
13번째 줄: 13번째 줄:
 
 
 
 
  
==delta potential scattering</h5>
+
==delta potential scattering==
  
 
* special case of scattering problem <math>A_r=1,  A_l=r,  B_r=t , B_l = 0</math>
 
* special case of scattering problem <math>A_r=1,  A_l=r,  B_r=t , B_l = 0</math>
28번째 줄: 28번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* [http://en.wikipedia.org/wiki/Delta_potential_barrier_%28QM%29 http://en.wikipedia.org/wiki/Delta_potential_barrier_(QM)]
 
* [http://en.wikipedia.org/wiki/Delta_potential_barrier_%28QM%29 http://en.wikipedia.org/wiki/Delta_potential_barrier_(QM)]

2012년 10월 28일 (일) 15:26 판

introduction

  • Let the potential is given by \(V(x) = \lambda\delta(x)\)
    \(\psi(x) = \begin{cases} \psi_{\mathrm L}(x) = A_{\mathrm r}e^{ikx} + A_{\mathrm l}e^{-ikx}, & \text{ if } x<0; \\ \psi_{\mathrm R}(x) = B_{\mathrm r}e^{ikx} + B_{\mathrm l}e^{-ikx}, & \text{ if } x>0, \end{cases}\)
  • we impose two conditions on the wave function
    •  the wave function be continuous in the origin
    •  integrate the Schrödinger equation around x = 0, over an interval [−ε, +ε] and In the limit as ε → 0, the right-hand side of this equation vanishes; the left-hand side becomes
  • first condition
    \(\psi(0) =\psi_L(0) = \psi_R(0) = A_r + A_l = B_r + B_l\)
    \(A_r + A_l - B_r - B_l = 0\)
  • second condition
    \( -\frac{\hbar^2}{2 m} \int_{-\epsilon}^{+\epsilon} \psi''(x) \,dx + \int_{-\epsilon}^{+\epsilon} V(x)\psi(x) \,dx = E \int_{-\epsilon}^{+\epsilon} \psi(x) \,dx\)
    LHS becomes \(-\frac{\hbar^2}{2m}[\psi_R'(0)-\psi_L'(0)] +\lambda\psi(0)\)
    RHS becomes 0
    \(-A_r + A_l + B_r - B_l =\frac{2m\lambda}{ik\hbar^2}(A_r + A_l)\)
  • the coefficient must satisfy
    \(A_r + A_l - B_r - B_l = 0\)
    \(-A_r + A_l + B_r - B_l =\frac{2m\lambda}{ik\hbar^2}(A_r + A_l)\)

 

 

delta potential scattering

  • special case of scattering problem \(A_r=1, A_l=r, B_r=t , B_l = 0\)
  • wave function
    \(\psi(x) = \begin{cases} \psi_{\mathrm L}(x) = e^{ikx} + re^{-ikx}, & \text{ if } x<0; \\ \psi_{\mathrm R}(x) =te^{ikx} , & \text{ if } x>0, \end{cases}\)

 

  • \(t-r=1\)
    \(t=\cfrac{1}{1-\cfrac{m\lambda}{i\hbar^2k}}\,\!\)
    \(r=\cfrac{1}{\cfrac{i\hbar^2 k}{m\lambda} - 1}\,\!\)
    \(R=|r|^2=\cfrac{1}{1+\cfrac{\hbar^4k^2}{m^2\lambda^2}}= \cfrac{1}{1+\cfrac{2\hbar^2 E}{m\lambda^2}}.\,\!\)
    \(T=|t|^2=1-R=\cfrac{1}{1+\cfrac{m^2\lambda^2}{\hbar^4k^2}}= \cfrac{1}{1+\cfrac{m \lambda^2}{2\hbar^2 E}}\,\!\)

 

 

 

encyclopedia==