"Lagrangian formulation of electromagetism"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * Lagrangian for a charged particle in an electromagnetic field <math>L=T-V</math> :<math>L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}</math><br> * action :<ma...)
 
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
*  Lagrangian for a charged particle in an electromagnetic field <math>L=T-V</math>
 
*  Lagrangian for a charged particle in an electromagnetic field <math>L=T-V</math>
:<math>L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}</math><br>
+
:<math>L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}</math>
 
*  action
 
*  action
:<math>S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x</math><br>
+
:<math>S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x</math>
 
*  Euler-Lagrange equations
 
*  Euler-Lagrange equations
 
:<math>p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}</math>
 
:<math>p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}</math>
9번째 줄: 9번째 줄:
 
F_{i}=\frac{\partial{L}}{\partial{q^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}
 
F_{i}=\frac{\partial{L}}{\partial{q^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}
 
$$
 
$$
*  equation of motion<br><math>\dot{p}=F</math> Therefore we get
+
*  equation of motion<math>\dot{p}=F</math> Therefore we get
:<math>m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}</math>. This is what we call the Lorentz force law.<br>
+
:<math>m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}</math>. This is what we call the Lorentz force law.
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 +
 +
==expositions==
 
* THOMAS YU [http://math.uchicago.edu/~may/REU2012/REUPapers/Yu.pdf LAGRANGIAN FORMULATION OF THE ELECTROMAGNETIC FIELD]
 
* THOMAS YU [http://math.uchicago.edu/~may/REU2012/REUPapers/Yu.pdf LAGRANGIAN FORMULATION OF THE ELECTROMAGNETIC FIELD]
* http://dexterstory.tistory.com/888<br>
+
* http://www.lecture-notes.co.uk/susskind/classical-mechanics/lecture-8/the-electromagnetic-lagrangian/
* [[path integral formulation of quantum mechanics|path integral]]<br>
+
* http://dexterstory.tistory.com/888
 +
 
 +
==related items==
 +
* [[path integral formulation of quantum mechanics|path integral]]

2013년 3월 23일 (토) 10:17 판

introduction

  • Lagrangian for a charged particle in an electromagnetic field \(L=T-V\)

\[L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}\]

  • action

\[S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x\]

  • Euler-Lagrange equations

\[p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}\] $$ F_{i}=\frac{\partial{L}}{\partial{q^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j} $$

  • equation of motion\(\dot{p}=F\) Therefore we get

\[m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}\]. This is what we call the Lorentz force law.

  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

expositions

related items