"Lagrangian formulation of electromagetism"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
12번째 줄: 12번째 줄:
 
:<math>m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}</math>. This is what we call the Lorentz force law.
 
:<math>m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}</math>. This is what we call the Lorentz force law.
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 +
 +
 +
 +
==memo==
 +
* http://dexterstory.tistory.com/888
 +
 +
 +
 +
==related items==
 +
* [[path integral formulation of quantum mechanics|path integral]]
 +
  
  
18번째 줄: 29번째 줄:
 
* [http://www.physics.sfsu.edu/~lea/courses/grad/fldlagr.PDF The field Lagrangian]
 
* [http://www.physics.sfsu.edu/~lea/courses/grad/fldlagr.PDF The field Lagrangian]
 
* http://www.lecture-notes.co.uk/susskind/classical-mechanics/lecture-8/the-electromagnetic-lagrangian/
 
* http://www.lecture-notes.co.uk/susskind/classical-mechanics/lecture-8/the-electromagnetic-lagrangian/
* http://dexterstory.tistory.com/888
 
  
  
==related items==
+
 
* [[path integral formulation of quantum mechanics|path integral]]
+
==questions==
 +
* http://physics.stackexchange.com/questions/3005/derivation-of-maxwells-equations-from-field-tensor-lagrangian?rq=1

2013년 3월 23일 (토) 23:24 판

introduction

  • Lagrangian for a charged particle in an electromagnetic field \(L=T-V\)

\[L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}\]

  • action

\[S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x\]

  • Euler-Lagrange equations

\[p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}\] $$ F_{i}=\frac{\partial{L}}{\partial{q^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j} $$

  • equation of motion\(\dot{p}=F\) Therefore we get

\[m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}\]. This is what we call the Lorentz force law.

  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)


memo


related items


expositions


questions