"Lagrangian formulation of electromagetism"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
 
(같은 사용자의 중간 판 24개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==introduction==
+
* {{수학노트|url=전자기학의_라그랑지안}}
* Lagrangian for a charged particle in an electromagnetic field <math>L=T-V</math>
+
* [[path integral formulation of quantum mechanics]]
:<math>L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}</math>
+
* [[Electroweak theory]]
*  action
+
[[분류:migrate]]
:<math>S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x</math>
 
* Euler-Lagrange equations
 
:<math>p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}</math>
 
$$
 
F_{i}=\frac{\partial{L}}{\partial{q^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}
 
$$
 
*  equation of motion<math>\dot{p}=F</math> Therefore we get
 
:<math>m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}</math>. This is what we call the Lorentz force law.
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
 
 
==expositions==
 
* THOMAS YU [http://math.uchicago.edu/~may/REU2012/REUPapers/Yu.pdf LAGRANGIAN FORMULATION OF THE ELECTROMAGNETIC FIELD]
 
* http://www.lecture-notes.co.uk/susskind/classical-mechanics/lecture-8/the-electromagnetic-lagrangian/
 
* http://dexterstory.tistory.com/888
 
 
 
==related items==
 
* [[path integral formulation of quantum mechanics|path integral]]
 

2020년 11월 13일 (금) 10:43 기준 최신판