"Lagrangian formulation of electromagetism"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
 
(같은 사용자의 중간 판 6개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==하전입자에 대한 라그랑지안==
+
* {{수학노트|url=전자기학의_라그랑지안}}
* 전자기장 안에서 하전입자에 대한 라그랑지안
 
:<math>L(q,\dot{q})=\frac{m||\dot{q}||^2}{2}-e\phi+eA_{i}\dot{q}^{i}</math>
 
* 켤레운동량
 
:<math>p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m \dot{q}_{i}+eA_{i}=mv_{i}+eA_{i}</math>
 
$$
 
\dot{p}_{i}=m\frac{dv_{i}}{dt}+e\frac{\partial{A_{i}}}{\partial t}+e\frac{\partial{A_{i}}}{\partial{q}^{j}}\dot{q}^{j}
 
$$
 
$$
 
F_{i}=\frac{\partial{L}}{\partial{q^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(-e\phi+eA_{j}\dot{q}^{j})=-e\frac{\partial{\phi}}{\partial{q}^{i}} +e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}
 
$$
 
* 오일러-라그랑지 방정식 <math>\dot{p}=F,</math>
 
:<math>m\frac{dv_{i}}{dt}=eE_{i}+eF_{ij}\dot{q}^{j}</math>
 
where $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!$
 
* for example, if $i=1$
 
$$
 
ma_1=eE_1+e(F_{11}\dot{q}^{1}+F_{12}\dot{q}^{2}+F_{13}\dot{q}^{3})=eE_1+e(F_{12}\dot{q}^{2}-F_{31}\dot{q}^{3})=eE_1+e(\mathbf{v}\times \mathbf{B})_{1}
 
$$
 
where $F_{12}=-B_{3}$ and $F_{31}=-B_{2}$
 
* 이를 로렌츠 힘이라 한다
 
* 전하가 받는 힘은
 
:<math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
* http://en.wikipedia.org/wiki/Lorentz_force
 
* {{수학노트|url=전자기_텐서와_맥스웰_방정식}}
 
 
 
 
 
==전자기장에 대한 라그랑지안==
 
===free===
 
* 상호작용이 없는 전자기장의 라그랑지안은 다음과 같다
 
$$\mathcal{L}_{\text{EM}}= - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}=\frac{1}{2}(\mathbf{E}^2-\mathbf{B}^2)$$
 
이 때 <math>F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \,\!</math>는 전자기텐서, $A=(A_{\mu})$는 전자기 포텐셜
 
*  action
 
:<math>S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x</math>
 
* 라그랑지안은 전자기 포텐셜의 다음과 같은 변환에 대하여 불변이다
 
:<math>A_{\mu}(x) \to A_{\mu}(x)-\partial_{\mu}\Lambda(x)</math>
 
여기서 $\Lambda(x)$는 임의의 스칼라장
 
* equation of motion
 
$$
 
\partial_\mu F^{\mu\nu}=0
 
$$
 
* see http://www.damtp.cam.ac.uk/user/tong/qft/six.pdf
 
 
 
===in the presence of $j$ and $\rho$===
 
* Lagrangian
 
$$L=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-ej_\mu A^\mu$$
 
* action
 
$$S[\phi,A]=\int_{t_1}^{t_2}\int_{\mathbb{R}^3}\left(-\rho\phi+j\cdot A+\frac{\epsilon_0}{2}E^2-\frac{1}{2\mu_0}B^2\right)\,dV\,dt$$
 
* w.r.t $\phi$
 
$$\nabla\cdot E=\frac{\rho}{\epsilon_0}$$
 
* w.r.t $A$
 
$$\nabla\times B=\mu_0j+\epsilon_0\mu_0\frac{\partial E}{\partial t}$$
 
 
 
 
 
 
 
 
 
==memo==
 
* http://dexterstory.tistory.com/888
 
 
 
 
 
 
 
==related items==
 
 
* [[path integral formulation of quantum mechanics]]
 
* [[path integral formulation of quantum mechanics]]
 
* [[Electroweak theory]]
 
* [[Electroweak theory]]
 
+
[[분류:migrate]]
 
 
==expositions==
 
* THOMAS YU [http://math.uchicago.edu/~may/REU2012/REUPapers/Yu.pdf Lagrangian formulation of the electromagnetic field]
 
* Lea, [http://www.physics.sfsu.edu/~lea/courses/grad/fldlagr.PDF The field Lagrangian]
 
* Susskind, [http://www.lecture-notes.co.uk/susskind/classical-mechanics/lecture-8/the-electromagnetic-lagrangian/ The electromagnetic Lagrangian]
 
* Lecture 8 | Modern Physics: Classical Mechanics (Stanford). 2008. http://www.youtube.com/watch?v=gUUbl444r74&feature=youtube_gdata_player.
 
 
 
 
 
==blogs==
 
* Higgs mechanism
 
** http://unapologetic.wordpress.com/2012/07/16/the-higgs-mechanism-part-1-lagrangians/
 
** http://unapologetic.wordpress.com/2012/07/17/the-higgs-mechanism-part-2-examples-of-lagrangian-field-equations/
 
** http://unapologetic.wordpress.com/2012/07/18/the-higgs-mechanism-part-3-gauge-symmetries/
 
** http://unapologetic.wordpress.com/2012/07/19/the-higgs-mechanism-part-4-symmetry-breaking/
 
 
 
 
 
 
 
==questions==
 
* http://physics.stackexchange.com/questions/3005/derivation-of-maxwells-equations-from-field-tensor-lagrangian?rq=1
 

2020년 11월 13일 (금) 10:43 기준 최신판