"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
 
 
 
 
  
<h5>character formula of sl(2)</h5>
+
<h5>character formula</h5>
  
 
*  Weyl-Kac formula<br><math>ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}</math><br>
 
*  Weyl-Kac formula<br><math>ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}</math><br>
 +
*  for trivial representation, we get denominator identity<br><math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}</math><br>
 +
 +
 
 +
 +
 
  
*  for trivial representation, we get denominator identity<br><math>{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}</math><br>
+
 
  
 
 
 
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">specialization</h5>
  
 
 
 
 
  
* [[affine sl(2) $A^{(1)} 1$|affine sl(2)]]<br>
+
* Cartan matrix<br><math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math><br>
 +
*  Find the highest root <br><math>\alpha</math><br>
 +
 
 +
*  integrable weights and Weyl vector<br><math>\omega=\frac{1}{2}\alpha</math><br><math>\rho=\omega</math><br> integrable weights <math>\lambda=n\omega</math><br>
 +
*  Weyl-Kac formula<br><math>ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}</math><br>
  
 
 
 
 

2010년 4월 9일 (금) 05:48 판

introduction

 

 

character formula
  • Weyl-Kac formula
    \(ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}\)
  • for trivial representation, we get denominator identity
    \({\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\)

 

 

 

 

specialization

 

  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • Find the highest root 
    \(\alpha\)
  • integrable weights and Weyl vector
    \(\omega=\frac{1}{2}\alpha\)
    \(\rho=\omega\)
    integrable weights \(\lambda=n\omega\)
  • Weyl-Kac formula
    \(ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}\)

 

 

 

Chebyshev polynomial of the 2nd kind
  • \(U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)\)
  • character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
    \(U_n(\cos\theta)= \frac{\sin (n+1)\theta}{\sin \theta}\)
  • \(w=e^{i\theta}\), \(z=w+w^{-1}=2\cos\theta\)
    \(p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}\)
    \(p_{0}(z)=1\)
    \(p_{1}(z)=z\)
    \(p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)\)

 

 

Catalan numbers
  1. f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
    Table[Simplify[f[2 k]], {k, 1, 10}]
    Table[CatalanNumber[n], {n, 1, 10}]

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

articles

[[2010년 books and articles|]]

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links