"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 26번째 줄: | 26번째 줄: | ||
*  integrable weights and Weyl vector<br><math>\omega=\frac{1}{2}\alpha</math><br><math>\rho=\omega</math><br> integrable weights <math>\lambda=n\omega</math><br>  | *  integrable weights and Weyl vector<br><math>\omega=\frac{1}{2}\alpha</math><br><math>\rho=\omega</math><br> integrable weights <math>\lambda=n\omega</math><br>  | ||
*  Weyl-Kac formula<br><math>\operatorname{ch}L(n\omega)=\frac{e^{(n+1)\omega}-e^{-(n+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{n\omega}+e^{(n-2)\omega}+\cdots+e^{-n\omega}</math><br>  | *  Weyl-Kac formula<br><math>\operatorname{ch}L(n\omega)=\frac{e^{(n+1)\omega}-e^{-(n+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{n\omega}+e^{(n-2)\omega}+\cdots+e^{-n\omega}</math><br>  | ||
| + | *   <br>  | ||
| 42번째 줄: | 43번째 줄: | ||
<h5>Hermite reciprocity</h5>  | <h5>Hermite reciprocity</h5>  | ||
| + | |||
| + | * '''[GW1998]'''  | ||
*  character of j-th symmetric power of V_k is<br><math>\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}</math><br>  | *  character of j-th symmetric power of V_k is<br><math>\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}</math><br>  | ||
| 90번째 줄: | 93번째 줄: | ||
<h5>books</h5>  | <h5>books</h5>  | ||
| − | * Representations and invariants of the   | + | * '''[GW1998]'''Representations and invariants of the classical groups<br>  | 
| − | * Goodman and Wallach  | + | ** Goodman and Wallach  | 
* [[2010년 books and articles]]<br>  | * [[2010년 books and articles]]<br>  | ||
* http://gigapedia.info/1/  | * http://gigapedia.info/1/  | ||
2010년 4월 9일 (금) 06:10 판
introduction
- http://qchu.wordpress.com/2010/03/07/walks-on-graphs-and-tensor-products/
 - http://mathoverflow.net/questions/17197/how-does-this-relationship-between-the-catalan-numbers-and-su2-generalize
 
character formula
- Weyl-Kac formula
\(ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}\) - for trivial representation, we get denominator identity
\({\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\) 
specialization
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - root system
\(\Phi=\{\alpha,-\alpha\}\) 
- integrable weights and Weyl vector
\(\omega=\frac{1}{2}\alpha\)
\(\rho=\omega\)
integrable weights \(\lambda=n\omega\) - Weyl-Kac formula
\(\operatorname{ch}L(n\omega)=\frac{e^{(n+1)\omega}-e^{-(n+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{n\omega}+e^{(n-2)\omega}+\cdots+e^{-n\omega}\) -  
 
Chebyshev polynomial of the 2nd kind
- \(U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)\)
U_0[x]=1
U_1[x]=2 x
U_2[x]=-1+4 x^2
U_3[x]=-4 x+8 x^3 - character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
\(U_n(\cos\theta)= \frac{\sin (n+1)\theta}{\sin \theta}\) - \(w=e^{i\theta}\), \(z=w+w^{-1}=2\cos\theta\)
\(p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}\)
\(p_{0}(z)=1\)
\(p_{1}(z)=z\)
\(p_{2}(z)=z^2-1\)
\(p_{3}(z)=z^3-2z\)
\(p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)\) 
Hermite reciprocity
- [GW1998]
 
- character of j-th symmetric power of V_k is
\(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\) 
Catalan numbers
- f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
Table[Simplify[f[2 k]], {k, 1, 10}]
Table[CatalanNumber[n], {n, 1, 10}] 
history
- cyclotomic numbers and Chebyshev polynomials
 - Weyl-Kac character formula
 - Macdonald constant term conjecture
 
encyclopedia
- 체비셰프 다항식
 - http://en.wikipedia.org/wiki/
 - http://www.scholarpedia.org/
 - Princeton companion to mathematics(Companion_to_Mathematics.pdf)
 
books
- [GW1998]Representations and invariants of the classical groups
- Goodman and Wallach
 
 - 2010년 books and articles
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
articles
[[2010년 books and articles|]]
- SL(2,C), SU(2), and Chebyshev polynomials
- Henri Bacry, J. Math. Phys. 28, 2259 (1987)
 
 - http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 - http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 - http://dx.doi.org/10.1063/1.527759
 
question and answers(Math Overflow)
blogs
experts on the field