"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
136번째 줄: 136번째 줄:
  
 
* [[affine sl(2)]]
 
* [[affine sl(2)]]
 
* [[cyclotomic numbers and Chebyshev polynomials]]
 
 
* [[Weyl-Kac character formula]]
 
* [[Weyl-Kac character formula]]
 
* [[Macdonald constant term conjecture]]
 
* [[Macdonald constant term conjecture]]
149번째 줄: 147번째 줄:
 
* [http://pythagoras0.springnote.com/pages/4783755 q-이항정리]
 
* [http://pythagoras0.springnote.com/pages/4783755 q-이항정리]
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
  
  
160번째 줄: 156번째 줄:
  
 
* '''[GW1998]'''Goodman and Wallach,Representations and invariants of the classical groups
 
* '''[GW1998]'''Goodman and Wallach,Representations and invariants of the classical groups
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
  
 
 
  
 
==articles==
 
==articles==
 
+
* Bacry, Henri. 1987. “SL(2,C), SU(2), and Chebyshev Polynomials.” Journal of Mathematical Physics 28 (10) (October 1): 2259–2267. doi:10.1063/1.527759.
[[2010년 books and articles|2010년 books and articles]]
 
 
 
* [http://dx.doi.org/10.1063/1.527759 SL(2,C), SU(2), and Chebyshev polynomials]<br>
 
** Henri Bacry, J. Math. Phys. 28, 2259 (1987)
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/10.1063/1.527759
 
 
 
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
 
 
==blogs==
 
 
 
* 구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
 
 
 
==experts on the field==
 
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
  
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]

2013년 12월 1일 (일) 14:39 판

introduction

 

 

specialization

  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • root system
    \(\Phi=\{\alpha,-\alpha\}\)

 

 

representation theory

  • integrable weights and Weyl vector
    \(\omega=\frac{1}{2}\alpha\)
    \(\rho=\omega\)
  • there is a unique k+1 dimensional irreducible module \(V_k\) with the highest integrable weight \(\lambda=k\omega\)
  • Weyl-Kac formula
    \(\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\)

 

 

character formula and Chebyshev polynomial of the 2nd kind

  • \(U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\)
    U_0[x]=1
    U_1[x]=2 x
    U_2[x]=-1+4 x^2
    U_3[x]=-4 x+8 x^3
  • character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
    \(U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}\)
  • \(w=e^{i\theta}\),\(z=w+w^{-1}=2\cos\theta\)
    \(p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}\)
    \(p_{0}(z)=1\)
    \(p_{1}(z)=z\)
    \(p_{2}(z)=z^2-1\)
    \(p_{3}(z)=z^3-2z\)
    \(p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)\)

 

 

Hermite reciprocity

  • [GW1998]
  • dimension of symmetric algebra and exterior algebra of V_k

 

 

symmetric power of sl(2) representations

  • q-binomial type formula (Heine formula,useful techniques in q-series)
    \(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
  • the character of j-th symmetric power of V_k is
    \(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
    where the q-analogue of the natural number is defined as 
    \([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\)

 

(proof)

Fix a k throughout the argument.

Let \(F_j(q)\) be the character of j-th symmetric power of V_k.

\(F_j(q)=\sum_{m_0,\cdots,m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)

where \(m_0+m_1+\cdots+m_k=j\)

Now consider the generating function

\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j\)

I claim that

\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j=\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}\). 

To prove that see the power series expansion of a factor\[(1-zq^{k-2j})^{-1}=\sum_{m=0}^{\infty}z^mq^{m(k-2j)}\]. Therefore

\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{m_0,\cdots,m_k}z^{m_0+\cdots+m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)

Now we can easily check

\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)■

 

 

exterior algebra of sl(2) representations

\[\prod_{j=0}^{k}(1+zq^{k-2j})=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\]

  • the character of j-th exterior algebra of V_k is \[\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\]

 

(proof)

analogous to the above. ■

 

 

 

Clebsch-Gordan coefficients

 

 

Catalan numbers

  1. f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
    Table[Simplify[f[2 k]], {k, 1, 10}]
    Table[CatalanNumber[n], {n, 1, 10}]

 

 

 

history

 

 

related items

 

 

encyclopedia


 

 

books

  • [GW1998]Goodman and Wallach,Representations and invariants of the classical groups


articles

  • Bacry, Henri. 1987. “SL(2,C), SU(2), and Chebyshev Polynomials.” Journal of Mathematical Physics 28 (10) (October 1): 2259–2267. doi:10.1063/1.527759.