"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
잔글 (Pythagoras0 사용자가 Sl(2) - orthogonal polynomials and Lie theory 문서를 Finite dimensional representations of Sl(2) 문서로 옮겼습니다.)
(차이 없음)

2013년 12월 14일 (토) 16:04 판

introduction

 

Hermite reciprocity

  • [GW1998]
  • dimension of symmetric algebra and exterior algebra of $V_k$

 

 

symmetric power of sl(2) representations

\[\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\]

  • the character of j-th symmetric power of $V_k$ is

\[\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\] where the q-analogue of the natural number is defined as \([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\)

proof

Fix a k throughout the argument.

Let \(F_j(q)\) be the character of j-th symmetric power of $V_k$. \[F_j(q)=\sum_{m_0,\cdots,m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\]

where \(m_0+m_1+\cdots+m_k=j\)

Now consider the generating function \[F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j\]

I claim that \[F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j=\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}\]

To prove that see the power series expansion of a factor \[(1-zq^{k-2j})^{-1}=\sum_{m=0}^{\infty}z^mq^{m(k-2j)}\] Therefore \[\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{m_0,\cdots,m_k}z^{m_0+\cdots+m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\]

Now we can easily check \[\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\]■

 

 

exterior algebra of sl(2) representations

\[\prod_{j=0}^{k}(1+zq^{k-2j})=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\]

  • the character of j-th exterior algebra of $V_k$ is

\[\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\]


proof

analogous to the above. ■

Clebsch-Gordan coefficients

 

 

Catalan numbers

  1. f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
    Table[Simplify[f[2 k]], {k, 1, 10}]
    Table[CatalanNumber[n], {n, 1, 10}]

 

 

 

history

 

 

related items

 

 

encyclopedia


 

 

books

  • [GW1998]Goodman and Wallach,Representations and invariants of the classical groups


articles

  • Bacry, Henri. 1987. “SL(2,C), SU(2), and Chebyshev Polynomials.” Journal of Mathematical Physics 28 (10) (October 1): 2259–2267. doi:10.1063/1.527759.