"내적공간과 미분방정식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
33번째 줄: 33번째 줄:
 
[http://www.wolframalpha.com/input/?i=integrate_0%5E%28pi%29+1/2+%28cos%28x%29-cos%287+x%29%29+dx http://www.wolframalpha.com/input/?i=integrate_0^(pi)+1/2+(cos(x)-cos(7+x))+dx]
 
[http://www.wolframalpha.com/input/?i=integrate_0%5E%28pi%29+1/2+%28cos%28x%29-cos%287+x%29%29+dx http://www.wolframalpha.com/input/?i=integrate_0^(pi)+1/2+(cos(x)-cos(7+x))+dx]
 
[[분류:수학노트비공개]]
 
[[분류:수학노트비공개]]
 +
[[분류:수학노트(피)

2012년 10월 28일 (일) 16:35 판

벡터공간

\(f(0)=f(\pi)=0\) 을 만족시키는 \([0,\pi]\)에서 정의된 함수공간

 

내적

\((f,g)=\int_0^{\pi}f(x)g(x)\,dx\)

 

선형사상

\(L[y]=y''\)

 

(정리)

\(L[y]=y''\)은 Hermitian operator 이다.

즉 \((L[f],g)=(f'',g)=(f,g'')=(f,L[g])\)

(증명)

\((Lf,g)=\int_0^{\pi}f''(x)g(x)\,dx=[f'(x)g(x)]_0^{\pi}-\int_0^{\pi}f'(x)g'(x)\,dx=-[f(x)g'(x)]_0^{\pi}+\int_0^{\pi}f(x)g''(x)\,dx=(f,Lg)\)

 

http://www.wolframalpha.com/input/?i=+sin+3x+*+sin+4x+

http://www.wolframalpha.com/input/?i=integrate_0^(pi)+1/2+(cos(x)-cos(7+x))+dx [[분류:수학노트(피)