"Yang-Baxter equation (YBE)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 92번째 줄: | 92번째 줄: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| 116번째 줄: | 110번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">  | + | |
| + | |||
| + | |||
| + | |||
| + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5>  | ||
| + | |||
| + | * http://math.ucr.edu/home/baez/braids/node4.html  | ||
| + | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=  | ||
| + | * 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=  | ||
2010년 8월 3일 (화) 09:22 판
introduction
- exact solvability of many models is explained by commuting transfer matrices
 - manifestations of Yang-Baxter equation
- factorizable S-matrix
 
 - factorizable S-matrix
 
- \(R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}\)
 
integrability of a model
- in the space of couplings a submanifold exists, such as that the transfer matrices corresponding to any two points P and P' on it commute
 - characterized by a set of equations on the Boltzmann weights
- this set of equations is called the Yang-Baxter equation
 
 - this set of equations is called the Yang-Baxter equation
 - solutions to Yang-Baxter equation can lead to a construction of integrable models
 
transfer matrix
- transfer matrix is builtup from matrices of  Boltzmann weights
 - we need the trasfer matrices coming from different set of Boltzman weights commute 
 - partition function = trace of power of transfer matrices
 - so the problem of solving the model is reduced to the computation of this trace
 
R-matrix
- we make a matrix from the Boltzmann weights
 - if we can find an R-matrix, then it implies the existence of a set of Boltzmann weights which give exactly solvable models
 - that is why we care about the quantum groups
 - spectral parameters
 - anistropy parameters
 
Bethe ansatz
YBE for vertex models
- Yang-Baxter equation
 - conditions satisfied by the Boltzmann weights of vertex models
 
표준적인 도서 및 추천도서
- 찾아볼 수학책
 - Knots and physics
- Louis H. Kauffman
 
 - Quantum Groups in Two-Dimensional Physics
 - Yang-Baxter Equations, Conformal Invariance And Integrability In Statistical Mechanics And Field Theory
 - http://gigapedia.info/1/knots+physics
 - http://gigapedia.info/1/two-dimensional+physics
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
참고할만한 자료
- http://ko.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/Yang-Baxter
 - http://en.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/
 - Princeton companion to mathematics(첨부파일로 올릴것)
 
논문검색
- Integrable theories, Yang-Baxter algebras and quantum groups: An overview
 - Yang-Baxter algebras, integrable theories and quantum groups
- H. J. De Vega
 
 - Yang-Baxter algebras, integrable theories and Betre Ansatz
 - http://www.zentralblatt-math.org/zmath/en/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 - http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=