"Yang-Baxter equation (YBE)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 96번째 줄: | 96번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">  | + | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>  | 
* [http://www.springerlink.com/content/f359j24736v7400g/ Integrable theories, Yang-Baxter algebras and quantum groups: An overview]  | * [http://www.springerlink.com/content/f359j24736v7400g/ Integrable theories, Yang-Baxter algebras and quantum groups: An overview]  | ||
| 102번째 줄: | 102번째 줄: | ||
** H. J. De Vega  | ** H. J. De Vega  | ||
* [http://dx.doi.org/10.1142/S0217979290000383 Yang-Baxter algebras, integrable theories and Betre Ansatz]  | * [http://dx.doi.org/10.1142/S0217979290000383 Yang-Baxter algebras, integrable theories and Betre Ansatz]  | ||
| + | * [http://www.springerlink.com/content/p5j3234037233011/ Solvable models in statistical mechanics, from Onsager onward]<br>  | ||
| + | ** Baxter, 2005  | ||
| + | |||
| + | * [http://dx.doi.org/10.1103/PhysRev.150.327 One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System]<br>  | ||
| + | ** C. N. Yang, C. P. Yang, 1966  | ||
| + | |||
| + | * [http://dx.doi.org/10.1016/0031-9163(66)91024-9 One-dimensional chain of anisotropic spin-spin interactions]<br>  | ||
| + | ** C. N. Yang, C. P. Yang, 1966  | ||
| + | |||
| + | * http://www.ams.org/mathscinet  | ||
* http://www.zentralblatt-math.org/zmath/en/  | * http://www.zentralblatt-math.org/zmath/en/  | ||
| + | * http://arxiv.org/  | ||
| + | * http://www.pdf-search.org/  | ||
* http://pythagoras0.springnote.com/  | * http://pythagoras0.springnote.com/  | ||
* http://math.berkeley.edu/~reb/papers/index.html  | * http://math.berkeley.edu/~reb/papers/index.html  | ||
| − | + | * http://dx.doi.org/  | |
| − | * http://  | ||
| − | |||
| − | |||
| − | |||
2010년 8월 3일 (화) 10:40 판
introduction
- exact solvability of many models is explained by commuting transfer matrices
 - manifestations of Yang-Baxter equation
- factorizable S-matrix
 
 - factorizable S-matrix
 
- \(R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}\)
 - 1966 Yang and Yang
 
integrability of a model
- in the space of couplings a submanifold exists, such as that the transfer matrices corresponding to any two points P and P' on it commute
 - characterized by a set of equations on the Boltzmann weights
- this set of equations is called the Yang-Baxter equation
 
 - this set of equations is called the Yang-Baxter equation
 - solutions to Yang-Baxter equation can lead to a construction of integrable models
 
transfer matrix
- transfer matrix is builtup from matrices of  Boltzmann weights
 - we need the trasfer matrices coming from different set of Boltzman weights commute 
 - partition function = trace of power of transfer matrices
 - so the problem of solving the model is reduced to the computation of this trace
 
R-matrix
- we make a matrix from the Boltzmann weights
 - if we can find an R-matrix, then it implies the existence of a set of Boltzmann weights which give exactly solvable models
 - that is why we care about the quantum groups
 - spectral parameters
 - anistropy parameters
 
Bethe ansatz
YBE for vertex models
- Yang-Baxter equation
 - conditions satisfied by the Boltzmann weights of vertex models
 
표준적인 도서 및 추천도서
- 찾아볼 수학책
 - Knots and physics
- Louis H. Kauffman
 
 - Quantum Groups in Two-Dimensional Physics
 - Yang-Baxter Equations, Conformal Invariance And Integrability In Statistical Mechanics And Field Theory
 - http://gigapedia.info/1/knots+physics
 - http://gigapedia.info/1/two-dimensional+physics
 - http://gigapedia.info/1/
 - http://gigapedia.info/1/
 - http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
참고할만한 자료
- http://ko.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/Yang-Baxter
 - http://en.wikipedia.org/wiki/
 - http://en.wikipedia.org/wiki/
 - Princeton companion to mathematics(첨부파일로 올릴것)
 
articles
- Integrable theories, Yang-Baxter algebras and quantum groups: An overview
 - Yang-Baxter algebras, integrable theories and quantum groups
- H. J. De Vega
 
 - Yang-Baxter algebras, integrable theories and Betre Ansatz
 - Solvable models in statistical mechanics, from Onsager onward
- Baxter, 2005
 
 
- One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System
- C. N. Yang, C. P. Yang, 1966
 
 
- One-dimensional chain of anisotropic spin-spin interactions
- C. N. Yang, C. P. Yang, 1966
 
 
- http://www.ams.org/mathscinet
 - http://www.zentralblatt-math.org/zmath/en/
 - http://arxiv.org/
 - http://www.pdf-search.org/
 - http://pythagoras0.springnote.com/
 - http://math.berkeley.edu/~reb/papers/index.html
 - http://dx.doi.org/