"Basic hypergeometric series"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
<math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math>
 
<math>\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})</math>
  
 
+
# f[q_] := QHypergeometricPFQ[{}, {}, q, -q]<br> g[q_] := Exp[-(Pi^2/(12 Log[q]))]<br> Table[N[f[2^(-i)]/g[2^(-i)], 10], {i, 5, 1000}]
  
 
 
 
 

2010년 3월 21일 (일) 09:14 판

Series[QPochhammer[q, q], {q, 0, 100}]
Series[\!\(<br> \*UnderoverscriptBox[\(\[Product]\), \(k = 1\), \(100\)]\((1 -<br>     q^k)\)\), {q, 0, 100}]
f[q_] := \!\(<br> \*UnderoverscriptBox[\(\[Sum]\), \(k = 0\), \(100\)]\(PartitionsP[<br>     k] q^k\)\)
Series[1/QPochhammer[q, q], {q, 0, 100}]
Series[f[q], {q, 0, 100}]
d[n_] := DivisorSigma[1, n]
g[q_] := \!\(<br> \*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(100\)]\(d[k] q^k\)\)
Expand[f[q]*g[q]]

 

 

q-hypergeometric series

\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)

  1. f[q_] := QHypergeometricPFQ[{}, {}, q, -q]
    g[q_] := Exp[-(Pi^2/(12 Log[q]))]
    Table[N[f[2^(-i)]/g[2^(-i)], 10], {i, 5, 1000}]

 

 

related items