"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
14번째 줄: 14번째 줄:
 
<h5 style="line-height: 2em; margin: 0px;">Cartan matrix</h5>
 
<h5 style="line-height: 2em; margin: 0px;">Cartan matrix</h5>
  
*  h : [[search?q=Coxeter%20number&parent id=5511121|Coxeter number]]<br>
+
*  h : [[Coxeter number]]<br>
 
*  eigenvalue<br><math>4\sin^2(\frac{m_{i}\pi}{2h})</math><br>
 
*  eigenvalue<br><math>4\sin^2(\frac{m_{i}\pi}{2h})</math><br>
 
* <math>m_{i}</math> is called the exponents<br>
 
* <math>m_{i}</math> is called the exponents<br>
33번째 줄: 33번째 줄:
  
 
 
 
 
 +
 +
<h5 style="line-height: 2em; margin: 0px;">homological algebraic characterization</h5>
 +
 +
For a s.s. Lie algebra L
 +
 +
(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1
  
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;"> </h5>
+
 
  
 
 
 
 

2011년 5월 12일 (목) 10:22 판

introduction
  • eigenvalues of Cartan matrices
  • eigenvalues of incidence matrices of Dynkin diagram

 

[1]

 

 

Cartan matrix
  • h : Coxeter number
  • eigenvalue
    \(4\sin^2(\frac{m_{i}\pi}{2h})\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree

 

 

adjacency matrix
  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)

 

  1. Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]
    Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]

 

homological algebraic characterization

For a s.s. Lie algebra L

(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links