"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
+
==introduction==
  
 
*  eigenvalues of Cartan matrices<br>
 
*  eigenvalues of Cartan matrices<br>
 
*  eigenvalues of incidence matrices of Dynkin diagram<br>
 
*  eigenvalues of incidence matrices of Dynkin diagram<br>
  
 
+
  
 
[http://pythagoras0.springnote.com/pages/1938682/attachments/3170605 ]
 
[http://pythagoras0.springnote.com/pages/1938682/attachments/3170605 ]
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">Cartan matrix</h5>
+
==Cartan matrix==
  
 
*  h : [[Coxeter number]]<br>
 
*  h : [[Coxeter number]]<br>
19번째 줄: 19번째 줄:
 
* <math>d_{i}=m_{i}+1</math> is called a degree<br>
 
* <math>d_{i}=m_{i}+1</math> is called a degree<br>
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">adjacency matrix</h5>
+
==adjacency matrix==
  
 
*  h : Coxeter number<br>
 
*  h : Coxeter number<br>
 
*  eigenvalue <math>2\cos(\pi l_n/h)</math><br>
 
*  eigenvalue <math>2\cos(\pi l_n/h)</math><br>
  
 
+
  
 
# Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]<br> Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]
 
# Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]<br> Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px;">homological algebraic characterization</h5>
+
==homological algebraic characterization==
  
 
For a s.s. Lie algebra L
 
For a s.s. Lie algebra L
42번째 줄: 42번째 줄:
 
(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1
 
(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1
  
 
+
  
 
+
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
+
==related items==
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
==encyclopedia==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
71번째 줄: 71번째 줄:
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
+
==books==
  
 
+
  
 
* [[2010년 books and articles]]<br>
 
* [[2010년 books and articles]]<br>
84번째 줄: 84번째 줄:
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
  
[[4909919|]]
+
[[4909919|4909919]]
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
==articles==
  
 
+
  
 
* [[2010년 books and articles|논문정리]]
 
* [[2010년 books and articles|논문정리]]

2012년 10월 27일 (토) 14:47 판

introduction

  • eigenvalues of Cartan matrices
  • eigenvalues of incidence matrices of Dynkin diagram


[1]



Cartan matrix

  • h : Coxeter number
  • eigenvalue
    \(4\sin^2(\frac{m_{i}\pi}{2h})\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree



adjacency matrix

  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)


  1. Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]
    Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]



homological algebraic characterization

For a s.s. Lie algebra L

(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1





history



related items

encyclopedia



books

4909919



articles