"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
95번째 줄: 95번째 줄:
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
* http://dx.doi.org/
 +
[[분류:개인노트]]

2012년 10월 28일 (일) 16:50 판

introduction

Cartan matrix

  • h : Coxeter number
  • eigenvalue
    \(4\sin^2(\frac{m_{i}\pi}{2h})\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree



adjacency matrix

  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)


  1. Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]
    Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]



homological algebraic characterization

For a s.s. Lie algebra L

(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1





history



related items

encyclopedia



books

4909919



articles