"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
7번째 줄: 7번째 줄:
 
==Cartan matrix==
 
==Cartan matrix==
  
*  h : [[Coxeter number]]<br>
+
*  h : [[Coxeter number and dual Coxeter number|Coxeter number]]<br>
 
*  eigenvalue<br><math>4\sin^2(\frac{m_{i}\pi}{2h})</math><br>
 
*  eigenvalue<br><math>4\sin^2(\frac{m_{i}\pi}{2h})</math><br>
 
* <math>m_{i}</math> is called the exponents<br>
 
* <math>m_{i}</math> is called the exponents<br>
 
* <math>d_{i}=m_{i}+1</math> is called a degree<br>
 
* <math>d_{i}=m_{i}+1</math> is called a degree<br>
 
 
 
 
  
 
==adjacency matrix==
 
==adjacency matrix==

2012년 12월 17일 (월) 17:43 판

introduction

Cartan matrix

  • h : Coxeter number
  • eigenvalue
    \(4\sin^2(\frac{m_{i}\pi}{2h})\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree

adjacency matrix

  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)


  1. Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]
    Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]



homological algebraic characterization

For a s.s. Lie algebra L

(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1





history



related items

encyclopedia




books




articles