"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
+
* appears in invariant theory
* eigenvalues of Cartan matrices
+
* eigenvalues of Coxeter element
* eigenvalues of incidence matrices of Dynkin diagram
+
* eigenvalues of Cartan matrices
 +
* eigenvalues of adjacency matrices of Dynkin diagram
 
* {{수학노트|url=유한반사군과_콕세터군(finite_reflection_groups_and_Coxeter_groups)}}
 
* {{수학노트|url=유한반사군과_콕세터군(finite_reflection_groups_and_Coxeter_groups)}}
  
8번째 줄: 9번째 줄:
 
==exponent==
 
==exponent==
 
* An eigenvalue of a Coxeter element is always of the form $\zeta^{m_i}$ for some integer $m_i$ where $\zeta$ is a primitive $h$-th root of unity. We call the integers $m_i$ such that $1\leq m_i\leq h-1$ the exponents.
 
* An eigenvalue of a Coxeter element is always of the form $\zeta^{m_i}$ for some integer $m_i$ where $\zeta$ is a primitive $h$-th root of unity. We call the integers $m_i$ such that $1\leq m_i\leq h-1$ the exponents.
 +
* if we denote the exponents by $m_i$, $1\le m_i \le h$, then $m_i+m_{r-i+1}=h$ where $r$ is the rank
 +
* eigenvalue of the Cartan matrix <math>4\sin^2(m_{i}\pi/2h)</math>
 +
* eigenvalue of the adjacency matrix <math>2\cos(\pi m_i/h)</math>
 +
 +
 
===example===
 
===example===
 
The characteristic polynomial of a Coxeter element  for $E_8$ acting on $\mathbb{R}^8$ is given by
 
The characteristic polynomial of a Coxeter element  for $E_8$ acting on $\mathbb{R}^8$ is given by
33번째 줄: 39번째 줄:
 
* conjectured by Coxeter
 
* conjectured by Coxeter
  
 
 
==Cartan matrix==
 
 
*  h : [[Coxeter number and dual Coxeter number|Coxeter number]]
 
*  eigenvalue <math>4\sin^2(m_{i}\pi/2h)</math>
 
* <math>m_{i}</math> is called the exponents
 
* <math>d_{i}=m_{i}+1</math> is called a degree
 
 
 
==adjacency matrix==
 
 
*  h : Coxeter number
 
*  eigenvalue <math>2\cos(\pi m_i/h)</math>
 
 
 
 
==degree and exponent of simple Lie algebra==
 
 
*  appears in invariant theory
 
*  can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
 
*  for incidence matrix, the eigenvalues are given by:<math>2\cos(\pi m_i/h)</math> where $h$ is the Coxeter number and <math>m_i</math>'s are the exponents
 
* if we denote the exponents by $m_i$, $1\le m_i \le h$, then $m_i+m_{r-i+1}=h$ where $r$ is the rank
 
  
  
61번째 줄: 44번째 줄:
 
* A4 Cartan matrix has the Coxeter number 5
 
* A4 Cartan matrix has the Coxeter number 5
 
:<math>\left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right)</math>  
 
:<math>\left( \begin{array}{cccc}  2 & -1 & 0 & 0 \\  -1 & 2 & -1 & 0 \\  0 & -1 & 2 & -1 \\  0 & 0 & -1 & 2 \end{array} \right)</math>  
* incidence matrix:<math>\left( \begin{array}{cccc}  0 & 1 & 0 & 0 \\  1 & 0 & 1 & 0 \\  0 & 1 & 0 & 1 \\  0 & 0 & 1 & 0 \end{array} \right)</math>  
+
* adjacency matrix:<math>\left( \begin{array}{cccc}  0 & 1 & 0 & 0 \\  1 & 0 & 1 & 0 \\  0 & 1 & 0 & 1 \\  0 & 0 & 1 & 0 \end{array} \right)</math>  
* eigenvalues of the incidence matrix:<math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math>
+
* eigenvalues of the adjacency matrix:<math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math>
  
 
   
 
   
85번째 줄: 68번째 줄:
 
==related items==
 
==related items==
 
* [[Coxeter groups and reflection groups]]
 
* [[Coxeter groups and reflection groups]]
 +
* [[Coxeter number and dual Coxeter number]]
 
* [[Macdonald constant term conjecture]]
 
* [[Macdonald constant term conjecture]]
 
* [[Poincare Series of Coxeter Groups]]
 
* [[Poincare Series of Coxeter Groups]]

2014년 7월 3일 (목) 00:41 판

introduction

  • appears in invariant theory
  • eigenvalues of Coxeter element
  • eigenvalues of Cartan matrices
  • eigenvalues of adjacency matrices of Dynkin diagram
  • 틀:수학노트


exponent

  • An eigenvalue of a Coxeter element is always of the form $\zeta^{m_i}$ for some integer $m_i$ where $\zeta$ is a primitive $h$-th root of unity. We call the integers $m_i$ such that $1\leq m_i\leq h-1$ the exponents.
  • if we denote the exponents by $m_i$, $1\le m_i \le h$, then $m_i+m_{r-i+1}=h$ where $r$ is the rank
  • eigenvalue of the Cartan matrix \(4\sin^2(m_{i}\pi/2h)\)
  • eigenvalue of the adjacency matrix \(2\cos(\pi m_i/h)\)


example

The characteristic polynomial of a Coxeter element for $E_8$ acting on $\mathbb{R}^8$ is given by $$ x^8+x^7-x^5-x^4-x^3+x+1 $$ Actually, this is the 30-th cyclotomic polynomial $\Phi_{30}(x)$ where $$ \Phi_n(x) =\prod_{1\le k\le n,\gcd(k,n)=1}\left(x-e^{2i\pi\frac{k}{n}}\right). $$

Its roots are $\left\{\zeta ,\zeta ^7,\zeta ^{11},\zeta ^{13},\zeta ^{17},\zeta ^{19},\zeta ^{23},\zeta ^{29}\right\}$ where $\zeta$ is a primitive 30-th root of unity.

property

thm (Kostant, 1959)

Let $m_1,\cdots,m_n$ be the exponents and $k_1,\cdots,k_n$ be the degrees arranged in an increasing order. Then $$ m_i=k_i-1. $$ Thus $$ \sum_{}m_i=\sum_{}(k_i-1)=\frac{nh}{2}=|\Phi^{+}| $$

  • conjectured by Coxeter


example

  • A4 Cartan matrix has the Coxeter number 5

\[\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)\]

  • adjacency matrix\[\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)\]
  • eigenvalues of the adjacency matrix\[\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}\]


homological algebraic characterization

  • For a semisimple. Lie algebra L
  • $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$


memo


history



related items


computational resource


encyclopedia


articles

  • Burns, John M., and Ruedi Suter. 2012. “Power Sums of Coxeter Exponents.” Advances in Mathematics 231 (3-4): 1291–1307. doi:10.1016/j.aim.2012.06.020.
  • Kostant, Bertram. “The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group.” American Journal of Mathematics 81 (1959): 973–1032.
  • Coleman, A. J. “The Betti Numbers of the Simple Lie Groups.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 10 (1958): 349–56.