"Special relativity"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “4909919” 문자열을 “” 문자열로)
imported>Pythagoras0
1번째 줄: 1번째 줄:
==four-vector ==
+
==four-vector ==
  
 
* can be transformed by Lorentz transformation
 
* can be transformed by Lorentz transformation
*  examples<br>
+
*  examples
** space-time (ct,x,y,z)
+
** space-time $(ct,x,y,z)$
** four momentum (m,mv_1,mv_2,mv_3)
+
** four momentum $(m,mv_1,mv_2,mv_3)$
 
** electromagnetic field
 
** electromagnetic field
  
 
+
  
 
+
  
 
==review of Maxwell's equation==
 
==review of Maxwell's equation==
  
* [[Electromagnetics|Electromagnetism]]<br>
+
* [[Electromagnetics|Electromagnetism]]
  
 
+
  
 
+
  
 
==Lorentz transformation and Maxwell's equation==
 
==Lorentz transformation and Maxwell's equation==
  
* http://en.wikipedia.org/wiki/Lorentz_transformation<br>
+
* http://en.wikipedia.org/wiki/Lorentz_transformation
* one-dimensional example<br><math>E_{tt}-E_{zz}=0</math><br>
+
* one-dimensional example
 +
:<math>E_{tt}-E_{zz}=0</math>
  
 
 
  
 
 
  
 
+
==Vacuum field equation and gravitational field equation==
  
==Vacuum field equation and gravitational field equation==
+
*  gravitational potentail satisfies the following equation (Poisson's equation)
 +
:<math>\nabla^2 \phi = - 4 \pi G \rho</math>
 +
* <math>\rho</math> is the matter density
 +
*  in relativity theory, the metric plays the role of gravitational potential
  
* gravitational potentail satisfies the following equation (Poisson's equation)<br><math>\nabla^2 \phi = - 4 \pi G \rho</math><br>
+
   
* <math>\rho</math> is the matter density<br>
 
*  in relativity theory, the metric plays the role of gravitational potential<br>
 
  
 
+
 
 
 
 
  
 
==energy-momentum tensor==
 
==energy-momentum tensor==
  
*  also called as stress-energy tensor<br>
+
*  also called as stress-energy tensor
*  describe the densities and flows of energy and momentum<br>
+
*  describe the densities and flows of energy and momentum
*  all forms of mass-energy can be sources of gravitational fields<br>
+
*  all forms of mass-energy can be sources of gravitational fields
*  the stress-energy tensor <math>T_{\mu \nu}</math> acts as a source of the gravitational field<br>
+
*  the stress-energy tensor <math>T_{\mu \nu}</math> acts as a source of the gravitational field
  
 
+
  
 
+
  
 
+
  
 
==relativistic Vacuum field equation==
 
==relativistic Vacuum field equation==
  
 
+
  
 
+
  
 
+
  
==relativistic matter field equation==
+
==relativistic matter field equation==
  
* [[Einstein field equation]]<br><math>R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math><br>
+
* [[Einstein field equation]]
 +
:<math>R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math>
  
 
 
  
 
+
 +
  
==history==
+
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
==related items==
 
+
* {{수학노트|url=미분기하학}}
 
 
 
 
 
 
 
 
 
 
 
 
==== 하위페이지 ====
 
 
 
* [[special and general relativity]]<br>
 
** [[cosmological constant]]<br>
 
** [[Einstein field equation]]<br>
 
** [[energy-momentum tensor]]<br>
 
** [[Hamiltonian formulation of GR]]<br>
 
** [[light cone coordinates and gauge]]<br>
 
** [[relativistic point particle]]<br>
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
+
=== 하위페이지 ===
  
==related items==
+
* [[special and general relativity]]
 +
** [[cosmological constant]]
 +
** [[Einstein field equation]]
 +
** [[energy-momentum tensor]]
 +
** [[Hamiltonian formulation of GR]]
 +
** [[light cone coordinates and gauge]]
 +
** [[relativistic point particle]]
  
* [http://pythagoras0.springnote.com/pages/1951508 미분기하학]<br>
 
  
 
 
 
 
 
  
 
==encyclopedia==
 
==encyclopedia==
  
* [http://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation]<br>
+
* http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation
* http://en.wikipedia.org/wiki/Einstein_field_equations<br>
+
* http://en.wikipedia.org/wiki/Einstein_field_equations
* http://en.wikipedia.org/wiki/Solutions_of_the_Einstein_field_equations<br>
+
* http://en.wikipedia.org/wiki/Solutions_of_the_Einstein_field_equations
*  <br>http://en.wikipedia.org/wiki/Lorentz_covariant<br>
+
* http://en.wikipedia.org/wiki/Lorentz_covariant
* [http://en.wikipedia.org/wiki/Lorentz_covariant ]http://en.wikipedia.org/wiki/Four-vector<br>
+
* http://en.wikipedia.org/wiki/Four-vector
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
  
 +
  
 
+
 
 
 
 
  
 
==books==
 
==books==
  
* http://gigapedia.com/items/45025/relativity-demystified---a-self-teaching-guide--2005-12<br>
+
* http://gigapedia.com/items/45025/relativity-demystified---a-self-teaching-guide--2005-12
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/relativity
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
  
 
+
  
 
==articles==
 
==articles==
  
* [http://www.fourmilab.ch/etexts/einstein/specrel/www/ On the electrodynamics of moving bodies]<br>
+
* [http://www.fourmilab.ch/etexts/einstein/specrel/www/ On the electrodynamics of moving bodies]
 
** A. Einstein, 1905
 
** A. Einstein, 1905
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html][http://www.ams.org/mathscinet ]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
  
 
 
  
 
+
 
 
==question and answers(Math Overflow)==
 
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
 
  
 
==blogs and webpage==
 
==blogs and webpage==
  
* [http://www.zweigmedia.com/diff_geom/tc.html Introduction to Differential Geometry and General Relativity]<br>
+
* [http://www.zweigmedia.com/diff_geom/tc.html Introduction to Differential Geometry and General Relativity]
**  Lecture Notes by Stefan Waner<br>
+
**  Lecture Notes by Stefan Waner
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
 
  
==links==
 
  
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
*
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:physics]]
 
[[분류:physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2014년 1월 5일 (일) 02:03 판

four-vector

  • can be transformed by Lorentz transformation
  • examples
    • space-time $(ct,x,y,z)$
    • four momentum $(m,mv_1,mv_2,mv_3)$
    • electromagnetic field



review of Maxwell's equation



Lorentz transformation and Maxwell's equation

\[E_{tt}-E_{zz}=0\]


Vacuum field equation and gravitational field equation

  • gravitational potentail satisfies the following equation (Poisson's equation)

\[\nabla^2 \phi = - 4 \pi G \rho\]

  • \(\rho\) is the matter density
  • in relativity theory, the metric plays the role of gravitational potential



energy-momentum tensor

  • also called as stress-energy tensor
  • describe the densities and flows of energy and momentum
  • all forms of mass-energy can be sources of gravitational fields
  • the stress-energy tensor \(T_{\mu \nu}\) acts as a source of the gravitational field




relativistic Vacuum field equation

relativistic matter field equation

\[R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}\]




related items

하위페이지


encyclopedia



books


articles



blogs and webpage