"Rank of partition and mock theta conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>order 3 Ramanujan mock theta function</h5>
 
<h5>order 3 Ramanujan mock theta function</h5>
  
* <math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} = {2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math><br>[http://www.research.att.com/%7Enjas/sequences/A000025 http://www.research.att.com/~njas/sequences/A000025]<br>[http://www.research.att.com/%7Enjas/sequences/b000025.txt http://www.research.att.com/~njas/sequences/b000025.txt]<br>
+
* <math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} {q^{n^2}\over (-q;q)_n^2}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math><br>[http://www.research.att.com/%7Enjas/sequences/A000025 http://www.research.att.com/~njas/sequences/A000025]<br>[http://www.research.att.com/%7Enjas/sequences/b000025.txt http://www.research.att.com/~njas/sequences/b000025.txt]<br>
  
 
 
 
 
23번째 줄: 23번째 줄:
 
<h5>harmonic Maass form of weight 1/2</h5>
 
<h5>harmonic Maass form of weight 1/2</h5>
  
 
+
* Zweger's completion
  
 
 
 
 
29번째 줄: 29번째 줄:
 
 
 
 
  
<h5>Maass-Poincare series</h5>
+
<h5>construction of the Maass-Poincare series</h5>
  
 
 
 
 
103번째 줄: 103번째 줄:
 
<h5>articles[http://www.maa.org/news/030807puzzlesolved.html ]</h5>
 
<h5>articles[http://www.maa.org/news/030807puzzlesolved.html ]</h5>
  
*  <br>[http://www.springerlink.com/content/5524655155350464/ The f(q) mock theta function conjecture and partition ranks]<br>
+
* [http://www.springerlink.com/content/5524655155350464/ The f(q) mock theta function conjecture and partition ranks]<br>
 
** Inventiones Mathematicae, 2006
 
** Inventiones Mathematicae, 2006
 
* [http://www.ingentaconnect.com/content/klu/rama/2003/00000007/F0030001/05142410 Partitions : at the interface of q-series and modular forms]<br>
 
* [http://www.ingentaconnect.com/content/klu/rama/2003/00000007/F0030001/05142410 Partitions : at the interface of q-series and modular forms]<br>
 
**  Andrews, George E., 2003<br>
 
**  Andrews, George E., 2003<br>
 
 
 
  
 
* '''[Dragonette1952]'''[http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]<br>
 
* '''[Dragonette1952]'''[http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]<br>

2010년 3월 3일 (수) 18:35 판

order 3 Ramanujan mock theta function

 

 

Andrews-Dragonette
  • [Dragonette1952] and [Andrews1966]
  • rank of partition
    분할의 rank = 분할에서 가장 큰 수 - 분할의 크기
    9의 분할인 {7,1,1}의 경우, rank=7-3=4
    9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
  • \(N_e(n), N_o(n)\) number of partition with even rank and odd rank
  • \(p(n)=N_e(n)+N_o(n)\)
  • \(\alpha(n)=N_e(n)-N_o(n)\)
  • this is in fact the coefficient of mock theta function
    \(f(q) = \sum_{n\ge 0} \alpha(n)q^n\)
  • thus we need modularity of f(q) to get exact formula for \(\alpha(n)\) as \(p(n)\) obtained by the circle method

 

 

harmonic Maass form of weight 1/2
  • Zweger's completion

 

 

construction of the Maass-Poincare series

 

 

generalization

 

 

 

history

 

 

related items

 

 

books

 

encyclopedia

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

articles[1]

 

 

experts on the field

 

 

TeX