"Rank of partition and mock theta conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
152번째 줄: 152번째 줄:
  
 
==TeX ==[[분류:개인노트]]
 
==TeX ==[[분류:개인노트]]
 +
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2012년 10월 29일 (월) 10:55 판

order 3 Ramanujan mock theta function

  1. Series[(1 + 4 Sum[(-1)^n q^(n (3 n + 1)/2)/(1 + q^n), {n, 1, 10}])/
    Sum[(-1)^n q^(n (3 n + 1)/2), {n, -8, 8}], {q, 0, 100}]

 

 

 

Andrews-Dragonette

  • [Dragonette1952] and [Andrews1966]
  • concerns the question of partitions with even rank and odd rank
  • rank of partition =  largest part - number of parts
    9의 분할인 {7,1,1}의 경우, rank=7-3=4
    9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
  • \(N_e(n), N_o(n)\) number of partition with even rank and odd rank
  • \(p(n)=N_e(n)+N_o(n)\)
  • \(\alpha(n)=N_e(n)-N_o(n)\)
  • this is in fact the coefficient of mock theta function
    \(f(q) = \sum_{n\ge 0} \alpha(n)q^n\)
  • thus we need modularity of f(q) to get exact formula for \(\alpha(n)\) as \(p(n)\) was obtained by the circle method

 

 

harmonic Maass form of weight 1/2

  • Zweger's completion

 

 

construction of the Maass-Poincare series

 

 

generalization

  • crank

 

 

history

 

 

related items

 

 

books

 

encyclopedia

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

articles

1988 Hickerson

 

 

 

experts on the field

 

 

==TeX ==