"Spin system and Pauli exclusion principle"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
 
 
 
  
<h5>angular momentum</h5>
+
<h5>classical angular momentum</h5>
  
 
+
* L=r\times p
 +
 
 +
*  A classical electron moving around a nucleus in a circular orbit<br>
 +
** orbital angular momentum, L=m_evr
 +
** magnetic dipole moment, \mu= -evr/2
 +
** where e, m_e, v, and r are the electron´s charge, mass, velocity, and radius, respectively.
 +
*  A classical electron of homogeneous mass and charge density rotating about a symmetry axis<br>
 +
** angular momentum, L=(3/5)m_eR^2\Omega
 +
** magnetic dipole moment, \mu= -(3/10)eR^2\Omega, where R and \Omega are the electron´s classical radius and rotating frequency
 +
*  gyromagnetic ratio <math>\gamma = \mu/L=-e/2m_e</math><br>[/pages/7141159/attachments/4562863 I15-62-g20.jpg]<br>
 +
* pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment]
  
 
 
 
 

2011년 1월 17일 (월) 12:34 판

introduction
  • the simplest example of quantum mechanical system
  • quantization of the angular momentum
  • measures as being some multiple of Planck's constant divided by 2pi

 

 

classical angular momentum
  • L=r\times p
  • A classical electron moving around a nucleus in a circular orbit
    • orbital angular momentum, L=m_evr
    • magnetic dipole moment, \mu= -evr/2
    • where e, m_e, v, and r are the electron´s charge, mass, velocity, and radius, respectively.
  • A classical electron of homogeneous mass and charge density rotating about a symmetry axis
    • angular momentum, L=(3/5)m_eR^2\Omega
    • magnetic dipole moment, \mu= -(3/10)eR^2\Omega, where R and \Omega are the electron´s classical radius and rotating frequency
  • gyromagnetic ratio \(\gamma = \mu/L=-e/2m_e\)
    [/pages/7141159/attachments/4562863 I15-62-g20.jpg]
  • pictures from Gyromagnetic Ratio and Anomalous Magnetic Moment

 

representation theory
  • concept from the representation of  \(SU(2)\)
  • half of highest weight is called the spin of the module
    • Casimir operator can also detect this number.
  • spin \(1/2\) is the most important case since they are the matter particles
  • this is why we have half-integral spin although those representation are integral highest weight representations.

 

 

operator formulation
  • 파울리 행렬 (해밀턴의 사원수 참조)
    \(\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \)
    \(\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \)
    \(\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\)
  • raising and lowering 연산자
    \(\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\)
    \(\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
    \(\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
    \([\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\)

 

 

sl(2)
  • commutator
    \([E,F]=H\)
    \([H,E]=2E\)
    \([H,F]=-2F\)

 

 

spin particle statstics
  • Bosons
    • photon
    • vector boson
    • Gluon
    • follows Bose-Einstein statistics
    • force-transmitting particles
  • Fermions = spin- \(1/2\) particles
    • quarks and leptons
    • follows Fermi-Dirac statistics
    •  
      matter particles

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links