"Elements of finite order (EFO) in Lie groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* explicit formulas for the number of conjugacy classes of EFOs in Lie groups
 +
* appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
 +
* $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$
 +
 +
 +
==EFO in unitary groups==
 +
===$U(n)$===
 +
* $N(G,m)= {n+m-1\choose m-1}$
 +
 +
===$SU(n)$===
 +
* $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$
 +
 +
 
==related items==
 
==related items==
 
* [[simple Lie groups and the Legendre symbol]]
 
* [[simple Lie groups and the Legendre symbol]]
 
+
* {{수학노트|url=중복조합의_공식_H(n,r)%3DC(n%2Br-1,r)}}
  
  

2013년 2월 11일 (월) 12:51 판

introduction

  • explicit formulas for the number of conjugacy classes of EFOs in Lie groups
  • appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
  • $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$


EFO in unitary groups

$U(n)$

  • $N(G,m)= {n+m-1\choose m-1}$

$SU(n)$

  • $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$


related items


computational resource