"Elements of finite order (EFO) in Lie groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
 
* appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
 
* $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$
 
* $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$
 
+
* $N(G,m,s)$ : number of conjugacy classes of $G$ in $E(G,m,s)$
  
 
==EFO in unitary groups==
 
==EFO in unitary groups==

2013년 2월 11일 (월) 13:47 판

introduction

  • explicit formulas for the number of conjugacy classes of EFOs in Lie groups
  • appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
  • $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$
  • $N(G,m,s)$ : number of conjugacy classes of $G$ in $E(G,m,s)$

EFO in unitary groups

$U(n)$

  • $N(G,m)= {n+m-1\choose m-1}$

$SU(n)$

  • $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$ if $(n,m)=1$

related items


computational resource