"Elements of finite order (EFO) in Lie groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
13번째 줄: 13번째 줄:
 
* $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$ if $(n,m)=1$
 
* $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$ if $(n,m)=1$
 
* $N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}$ if $(n,m)=1$
 
* $N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}$ if $(n,m)=1$
 +
  
 
==related items==
 
==related items==
22번째 줄: 23번째 줄:
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxLU5vUzJRQUNGdnc/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxLU5vUzJRQUNGdnc/edit
  
 +
 +
==questions==
 +
* http://mathoverflow.net/questions/86499/representations-of-quantum-groups-at-roots-of-unity
  
 
[[분류:Q-system]]
 
[[분류:Q-system]]

2013년 3월 9일 (토) 07:13 판

introduction

  • explicit formulas for the number of conjugacy classes of EFOs in Lie groups
  • appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of $G_2$ holonomy
  • $N(G,m)$ : number of conjugacy classes of $G$ in $E(G,m)$
  • $N(G,m,s)$ : number of conjugacy classes of $G$ in $E(G,m,s)$

EFO in unitary groups

$U(n)$

  • $N(G,m)= {n+m-1\choose m-1}$
  • $N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}$

$SU(n)$

  • $N(G,m)= \frac{1}{m}{n+m-1\choose m-1}$ if $(n,m)=1$
  • $N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}$ if $(n,m)=1$


related items


computational resource


questions