|
|
(사용자 2명의 중간 판 18개는 보이지 않습니다) |
1번째 줄: |
1번째 줄: |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
| + | ==개요== |
| | | |
− | * [[삼각함수의 배각공식 표]] | + | * 삼각함수는 다음과 같은 배각공식을 가짐 |
| + | :<math>\cos 2\theta =2 \cos^2 \theta - 1</math> |
| + | :<math>\sin 2\theta = 2 \sin \theta \cos \theta</math> |
| + | :<math>\cos 3\theta = 4 \cos^3\theta - 3 \cos \theta</math> |
| + | :<math>\sin 3\theta = 3 \sin \theta - 4 \sin^3\theta</math> |
| + | * 이 목록은 계속되며, 아래에 주어짐 |
| | | |
− |
| + | |
| | | |
− |
| + | |
| | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">간단한 소개</h5> | + | ==<math>\cos n\theta</math>== |
| | | |
− |
| + | * <math>\cos n\theta</math> 는 <math>c= \cos \theta</math>의 다항식으로 표현되며 [[체비셰프 다항식]] 이 사용됨 |
| + | :<math> |
| + | \begin{array}{c|c|l} |
| + | n & \cos n\theta & T_n(c) \\ |
| + | \hline |
| + | 0 & 1 & 1 \\ |
| + | 1 & \cos (\theta ) & c \\ |
| + | 2 & \cos (2 \theta ) & 2 c^2-1 \\ |
| + | 3 & \cos (3 \theta ) & 4 c^3-3 c \\ |
| + | 4 & \cos (4 \theta ) & 8 c^4-8 c^2+1 \\ |
| + | 5 & \cos (5 \theta ) & 16 c^5-20 c^3+5 c \\ |
| + | 6 & \cos (6 \theta ) & 32 c^6-48 c^4+18 c^2-1 \\ |
| + | 7 & \cos (7 \theta ) & 64 c^7-112 c^5+56 c^3-7 c \\ |
| + | 8 & \cos (8 \theta ) & 128 c^8-256 c^6+160 c^4-32 c^2+1 \\ |
| + | 9 & \cos (9 \theta ) & 256 c^9-576 c^7+432 c^5-120 c^3+9 c \\ |
| + | 10 & \cos (10 \theta ) & 512 c^{10}-1280 c^8+1120 c^6-400 c^4+50 c^2-1 |
| + | \end{array} |
| + | </math> |
| | | |
− | <h5 style="margin: 0px; line-height: 2em;"><math>\sin (2n+1)\theta</math></h5>
| |
| | | |
− | * <math>x= \sin \theta</math> 로 이해<br>
| + | |
− | * <math>\sin n\theta</math> 는 <math>x= \sin \theta</math>의 다항식으로 표현되며 [[체비셰프 다항식]] 이 사용됨<br>
| |
− | * 사용된 매쓰매티카 명령어<br>
| |
− | *# S:=Table[n,{n,0,19,2}]<br> Do[Print["Sin ",n+1,"\[Theta]=",ExpandAll[x*ChebyshevU[n,Sqrt[1-x^2]]]],{n,S}]<br>
| |
− | * 목록<br> Sin 1\[Theta]=x<br> Sin 3\[Theta]=3 x-4 x^3<br> Sin 5\[Theta]=5 x-20 x^3+16 x^5<br> Sin 7\[Theta]=7 x-56 x^3+112 x^5-64 x^7<br> Sin 9\[Theta]=9 x-120 x^3+432 x^5-576 x^7+256 x^9<br> Sin 11\[Theta]=11 x-220 x^3+1232 x^5-2816 x^7+2816 x^9-1024 x^11<br> Sin 13\[Theta]=13 x-364 x^3+2912 x^5-9984 x^7+16640 x^9-13312 x^11+4096 x^13<br> Sin 15\[Theta]=15 x-560 x^3+6048 x^5-28800 x^7+70400 x^9-92160 x^11+61440 x^13-16384 x^15<br> Sin 17\[Theta]=17 x-816 x^3+11424 x^5-71808 x^7+239360 x^9-452608 x^11+487424 x^13-278528 x^15+65536 x^17<br> Sin 19\[Theta]=19 x-1140 x^3+20064 x^5-160512 x^7+695552 x^9-1770496 x^11+2723840 x^13-2490368 x^15+1245184 x^17-262144 x^19<br>
| |
| | | |
− |
| + | ==<math>\sin n\theta</math>== |
| | | |
− |
| + | * <math>\sin n\theta</math> 는 <math>s= \sin \theta</math>와 <math>c=\cos\theta</math>의 다항식으로 표현되며 [[체비셰프 다항식]] 이 사용됨 |
| + | :<math> |
| + | \begin{array}{c|c|l} |
| + | n & \sin n\theta & sU_n(c) \\ |
| + | \hline |
| + | 0 & 0 & 0 \\ |
| + | 1 & \sin (\theta ) & s \\ |
| + | 2 & \sin (2 \theta ) & 2 c s \\ |
| + | 3 & \sin (3 \theta ) & 3 s-4 s^3 \\ |
| + | 4 & \sin (4 \theta ) & 4 c s-8 c s^3 \\ |
| + | 5 & \sin (5 \theta ) & 16 s^5-20 s^3+5 s \\ |
| + | 6 & \sin (6 \theta ) & 32 c s^5-32 c s^3+6 c s \\ |
| + | 7 & \sin (7 \theta ) & -64 s^7+112 s^5-56 s^3+7 s \\ |
| + | 8 & \sin (8 \theta ) & -128 c s^7+192 c s^5-80 c s^3+8 c s \\ |
| + | 9 & \sin (9 \theta ) & 256 s^9-576 s^7+432 s^5-120 s^3+9 s \\ |
| + | 10 & \sin (10 \theta ) & 512 c s^9-1024 c s^7+672 c s^5-160 c s^3+10 c s |
| + | \end{array} |
| + | </math> |
| | | |
− | <h5 style="margin: 0px; line-height: 2em;"><math>\sin (2n+1)\theta</math></h5>
| + | ==역사== |
| | | |
− | * <math>x=\sin\theta</math>, <math>\sqrt{1-x^2}=\cos\theta</math>로 이해<br> | + | * [[수학사 연표]] |
| | | |
− | * <math>\sin n\theta</math> 는 <math>x= \sin \theta</math>의 다항식으로 표현되며 [[체비셰프 다항식]] 이 사용됨<br>
| + | |
− | * 사용된 매쓰매티카 명령어<br>
| |
− | *# S:=Table[n,{n,0,19,2}]<br> Do[Print["Sin ",n+1,"\[Theta]=",ExpandAll[x*ChebyshevU[n,Sqrt[1-x^2]]]],{n,S}]<br>
| |
− | * 목록<br> Sin 1\[Theta]=x<br> Sin 3\[Theta]=3 x-4 x^3<br> Sin 5\[Theta]=5 x-20 x^3+16 x^5<br> Sin 7\[Theta]=7 x-56 x^3+112 x^5-64 x^7<br> Sin 9\[Theta]=9 x-120 x^3+432 x^5-576 x^7+256 x^9<br> Sin 11\[Theta]=11 x-220 x^3+1232 x^5-2816 x^7+2816 x^9-1024 x^11<br> Sin 13\[Theta]=13 x-364 x^3+2912 x^5-9984 x^7+16640 x^9-13312 x^11+4096 x^13<br> Sin 15\[Theta]=15 x-560 x^3+6048 x^5-28800 x^7+70400 x^9-92160 x^11+61440 x^13-16384 x^15<br> Sin 17\[Theta]=17 x-816 x^3+11424 x^5-71808 x^7+239360 x^9-452608 x^11+487424 x^13-278528 x^15+65536 x^17<br> Sin 19\[Theta]=19 x-1140 x^3+20064 x^5-160512 x^7+695552 x^9-1770496 x^11+2723840 x^13-2490368 x^15+1245184 x^17-262144 x^19<br>
| |
| | | |
− |
| + | |
| | | |
− |
| + | ==메모== |
| | | |
− | xU_0[Sqrt[1-x]]=x<br> xU_1[Sqrt[1-x]]=2 x Sqrt[1-x^2]<br> xU_2[Sqrt[1-x]]=3 x-4 x^3<br> xU_3[Sqrt[1-x]]=-4 x Sqrt[1-x^2] (-1+2 x^2)<br> xU_4[Sqrt[1-x]]=x (5-20 x^2+16 x^4)<br> xU_5[Sqrt[1-x]]=2 x Sqrt[1-x^2] (3-16 x^2+16 x^4)<br> xU_6[Sqrt[1-x]]=7 x-56 x^3+112 x^5-64 x^7<br> xU_7[Sqrt[1-x]]=-8 x Sqrt[1-x^2] (-1+10 x^2-24 x^4+16 x^6)<br> xU_8[Sqrt[1-x]]=x (9-120 x^2+432 x^4-576 x^6+256 x^8)<br> xU_9[Sqrt[1-x]]=2 x Sqrt[1-x^2] (5-80 x^2+336 x^4-512 x^6+256 x^8)<br> xU_10[Sqrt[1-x]]=11 x-220 x^3+1232 x^5-2816 x^7+2816 x^9-1024 x^11<br> xU_11[Sqrt[1-x]]=-4 x Sqrt[1-x^2] (-3+70 x^2-448 x^4+1152 x^6-1280 x^8+512 x^10)<br> xU_12[Sqrt[1-x]]=x (13-364 x^2+2912 x^4-9984 x^6+16640 x^8-13312 x^10+4096 x^12)<br> xU_13[Sqrt[1-x]]=2 x Sqrt[1-x^2] (7-224 x^2+2016 x^4-7680 x^6+14080 x^8-12288 x^10+4096 x^12)<br> xU_14[Sqrt[1-x]]=15 x-560 x^3+6048 x^5-28800 x^7+70400 x^9-92160 x^11+61440 x^13-16384 x^15<br> xU_15[Sqrt[1-x]]=-16 x Sqrt[1-x^2] (-1+42 x^2-504 x^4+2640 x^6-7040 x^8+9984 x^10-7168 x^12+2048 x^14)<br> xU_16[Sqrt[1-x]]=x (17-816 x^2+11424 x^4-71808 x^6+239360 x^8-452608 x^10+487424 x^12-278528 x^14+65536 x^16)<br> xU_17[Sqrt[1-x]]=2 x Sqrt[1-x^2] (9-480 x^2+7392 x^4-50688 x^6+183040 x^8-372736 x^10+430080 x^12-262144 x^14+65536 x^16)<br> xU_18[Sqrt[1-x]]=19 x-1140 x^3+20064 x^5-160512 x^7+695552 x^9-1770496 x^11+2723840 x^13-2490368 x^15+1245184 x^17-262144 x^19<br> xU_19[Sqrt[1-x]]=-4 x Sqrt[1-x^2] (-5+330 x^2-6336 x^4+54912 x^6-256256 x^8+698880 x^10-1146880 x^12+1114112 x^14-589824 x^16+131072 x^18)<br> xU_20[Sqrt[1-x]]=x (21-1540 x^2+33264 x^4-329472 x^6+1793792 x^8-5870592 x^10+12042240 x^12-15597568 x^14+12386304 x^16-5505024 x^18+1048576 x^20)
| + | |
| | | |
− |
| + | |
| | | |
− |
| + | ==관련된 항목들== |
| | | |
− | <h5>재미있는 사실</h5>
| + | * [[체비셰프 다항식]] |
| + | * [[삼각함수에는 왜 공식이 많은가?]] |
| | | |
− |
| |
| | | |
− | * 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | + | ==매스매티카 파일 및 계산 리소스== |
| + | * https://docs.google.com/file/d/0B8XXo8Tve1cxckdIR2Q4RzFfeTQ/edit?usp=drivesdk |
| | | |
− |
| + | [[분류:삼각함수]] |
− | | |
− |
| |
− | | |
− | <h5>역사</h5>
| |
− | | |
− | * [[수학사연표 (역사)|수학사연표]]
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5>메모</h5>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5>관련된 항목들</h5>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
| |
− | | |
− | * http://www.google.com/dictionary?langpair=en|ko&q=
| |
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
| |
− | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
| |
− | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5>사전 형태의 자료</h5>
| |
− | | |
− | * http://ko.wikipedia.org/wiki/
| |
− | * http://en.wikipedia.org/wiki/
| |
− | * http://www.wolframalpha.com/input/?i=
| |
− | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
| |
− | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
| |
− | ** http://www.research.att.com/~njas/sequences/?q=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5>관련논문</h5>
| |
− | | |
− | * http://www.jstor.org/action/doBasicSearch?Query=
| |
− | * http://dx.doi.org/
| |
− | | |
− |
| |
− | | |
− | <h5>관련도서 및 추천도서</h5>
| |
− | | |
− | * 도서내검색<br>
| |
− | ** http://books.google.com/books?q=
| |
− | ** http://book.daum.net/search/contentSearch.do?query=
| |
− | * 도서검색<br>
| |
− | ** http://books.google.com/books?q=
| |
− | ** http://book.daum.net/search/mainSearch.do?query=
| |
− | ** http://book.daum.net/search/mainSearch.do?query=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5>관련기사</h5>
| |
− | | |
− | * 네이버 뉴스 검색 (키워드 수정)<br>
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5>블로그</h5>
| |
− | | |
− | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
| |
− | * [http://navercast.naver.com/science/list 네이버 오늘의과학]
| |
− | * [http://math.dongascience.com/ 수학동아]
| |
− | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
| |
− | * [http://betterexplained.com/ BetterExplained]
| |