"0,1,∞ 의 수학"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | * [http://adsabs.harvard.edu/abs/2002math......5266B On a Question of Craven and a Theorem of Belyi] | ||
+ | * [http://citeseer.ist.psu.edu/old/magot96belyi.html Belyi Functions for Archimedean Solids (1996) ]<br> | ||
+ | ** Nicolas Magot, Alexander Zvonkin | ||
+ | * [http://www.iop.org/EJ/article/1064-5616/193/3/A02/MSB_193_3_A02.pdf?request-id=7f5caaac-0e3e-40fd-bfe5-07ba7c7b3df6 Another proof of the three points theorem]<br> | ||
+ | ** G.V. Belyˇı | ||
+ | * [http://www.mth.kcl.ac.uk/staff/wj_harvey/HstrasL.pdf Teichmuller spaces, triangle groups and. Grothendieck dessins.]<br> | ||
+ | ** William J. Harvey | ||
+ | * [http://adsabs.harvard.edu/abs/1994CMaPh.163..605C Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyi]<br> | ||
+ | ** Cohen, Paula Beazley; Itzykson, Claude; Wolfart, Jürgen | ||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/Belyi_theorem | ||
+ | |||
+ | |||
+ | |||
+ | [[서로 접하는 네 원에 대한 데카르트의 정리와 아폴로니우스 개스킷]] |
2010년 1월 13일 (수) 21:30 판
- On a Question of Craven and a Theorem of Belyi
- Belyi Functions for Archimedean Solids (1996)
- Nicolas Magot, Alexander Zvonkin
- Another proof of the three points theorem
- G.V. Belyˇı
- Teichmuller spaces, triangle groups and. Grothendieck dessins.
- William J. Harvey
- Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyi
- Cohen, Paula Beazley; Itzykson, Claude; Wolfart, Jürgen