"Affine sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
 
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">construction</h5>
 
<h5 style="margin: 0px; line-height: 2em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">construction</h5>
  
 +
*   <br>
 +
* this is borrowed from [[affine Kac-Moody algebra]] entry
 
* Let <math>\mathfrak{g}</math> be a semisimple Lie algebra with root system <math>\Phi</math> and the invariant form <math><\cdot,\cdot></math>
 
* Let <math>\mathfrak{g}</math> be a semisimple Lie algebra with root system <math>\Phi</math> and the invariant form <math><\cdot,\cdot></math>
* say <math>\mathfrak{g}=A_2</math>,  <math>\Phi=\{\alpha_1,\alpha_2\}</math>
+
* say <math>\mathfrak{g}=A_1</math>,  <math>\Phi=\{\alpha\}</math>
*  Cartan matrix<br><math>\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2  \end{pmatrix}</math><br>
+
*  Cartan matrix<br><math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math><br>
*  Find the highest root <math>\sum a_l\alpha_l</math><br>
+
*  Find the highest root <br>
** <math>\alpha_1+\alpha_2</math><br>
+
** <math>\alpha</math><br>
 
*  Add another simple root <math>\alpha_0</math> to the root system <math>\Phi</math><br>
 
*  Add another simple root <math>\alpha_0</math> to the root system <math>\Phi</math><br>
** <math>\alpha_0=-\alpha_1-\alpha_2</math><br>
+
** <math>\alpha_0=-\alpha</math><br>
*  Construct a new Cartan matrix<br><math>A' = \begin{pmatrix} 2 & -1 & -1 \\ -1 & & -1 \\ -1 & -1 & 2 \end{pmatrix}</math><br>
+
*  Construct a new Cartan matrix<br><math>A' = \begin{pmatrix} 2 & -2  \\ -2 & 2 \end{pmatrix}</math><br>
*  Note that this matrix has rank 2 since <math>(1,1,1)</math> belongs to the null space<br>
+
*  Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space<br>
 +
*  construct a Lie algebra from the new Cartan matrix <math>A'</math><br>
 +
*   <br> Add a outer derivation<math>d=-l_0</math> to compensate the degeneracy of the Cartan matrix<br><math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0  \end{pmatrix}</math><br>
  
 
 
 
 
23번째 줄: 27번째 줄:
 
<h5>level k highest weight representation</h5>
 
<h5>level k highest weight representation</h5>
  
*  integrable highest weight<br><math>\lambda=\sum_{i=0}^{r}\lambda_{i}\omega_i</math>, <math>\lambda_{i}\in\mathbb{N}</math><br>
+
*  integrable highest weight<br><math>\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1</math>, <math>\lambda_{i}\in\mathbb{N}</math><br>
*
+
* level<br><math>k=a_{0}^{\vee}\lambda_{0}+a_{1}^{\vee}\lambda_{1}</math><br>

2010년 3월 5일 (금) 04:39 판

Gannon 190p, 193p, 196p,371p

 

 

construction
  •  
  • this is borrowed from affine Kac-Moody algebra entry
  • Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
  • say \(\mathfrak{g}=A_1\),  \(\Phi=\{\alpha\}\)
  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • Find the highest root 
    • \(\alpha\)
  • Add another simple root \(\alpha_0\) to the root system \(\Phi\)
    • \(\alpha_0=-\alpha\)
  • Construct a new Cartan matrix
    \(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\)
  • Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
  • construct a Lie algebra from the new Cartan matrix \(A'\)
  •  
    Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
    \(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\)

 

 

level k highest weight representation
  • integrable highest weight
    \(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\)
  • level
    \(k=a_{0}^{\vee}\lambda_{0}+a_{1}^{\vee}\lambda_{1}\)