"Zamolodchikov's c-theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
11번째 줄: | 11번째 줄: | ||
c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle | c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle | ||
$$ | $$ | ||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * http://physics.stackexchange.com/questions/143518/zamolodchikovs-c-theorem-paper | ||
==encyclopedia== | ==encyclopedia== | ||
* http://en.wikipedia.org/wiki/C-theorem | * http://en.wikipedia.org/wiki/C-theorem |
2014년 10월 30일 (목) 04:47 판
correlation functions
- $\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}$
- $\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}$
- $\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}$
C-function
- $C=2F-G-\frac{3}{8}H$
UV-limit
$$ c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle $$
expositions