"Gaussian Orthogonal Ensemble"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
2번째 줄: 2번째 줄:
 
* The Gaussian orthogonal ensemble GOE(n) is described by the Gaussian measure with density
 
* The Gaussian orthogonal ensemble GOE(n) is described by the Gaussian measure with density
 
:<math> \frac{1}{Z_{\text{GOE}(n)}} e^{- \frac{n}{4} \mathrm{tr} H^2} </math>
 
:<math> \frac{1}{Z_{\text{GOE}(n)}} e^{- \frac{n}{4} \mathrm{tr} H^2} </math>
on the space of $n\times n$ real symmetric matrices $H=(H_{ij})$
+
on the space of <math>n\times n</math> real symmetric matrices <math>H=(H_{ij})</math>
 
* Its distribution is invariant under orthogonal conjugation, and it models Hamiltonians with time-reversal symmetry
 
* Its distribution is invariant under orthogonal conjugation, and it models Hamiltonians with time-reversal symmetry
  
16번째 줄: 16번째 줄:
 
* The joint probability density for the eigenvalues ''&lambda;''<sub>1</sub>,''&lambda;''<sub>2</sub>,...,''&lambda;''<sub>''n''</sub> of GOE is given by
 
* The joint probability density for the eigenvalues ''&lambda;''<sub>1</sub>,''&lambda;''<sub>2</sub>,...,''&lambda;''<sub>''n''</sub> of GOE is given by
 
: <math>\frac{1}{Z_{\beta, n}} \prod_{k=1}^n e^{-\frac{\beta n}{4}\lambda_k^2}\prod_{i<j}\left|\lambda_j-\lambda_i\right|^\beta~, \quad (1)</math>
 
: <math>\frac{1}{Z_{\beta, n}} \prod_{k=1}^n e^{-\frac{\beta n}{4}\lambda_k^2}\prod_{i<j}\left|\lambda_j-\lambda_i\right|^\beta~, \quad (1)</math>
where the Dyson index $\beta=1$, counts the number of real components per matrix element; ''Z''<sub>''&beta;'',''n''</sub> is a normalisation constant which can be explicitly computed as Selberg integral.  
+
where the Dyson index <math>\beta=1</math>, counts the number of real components per matrix element; ''Z''<sub>''&beta;'',''n''</sub> is a normalisation constant which can be explicitly computed as Selberg integral.  
 
* eigenvalues repel as the joint probability density has a zero (of <math>\beta</math>th order) for coinciding eigenvalues <math>\lambda_j=\lambda_i</math>.
 
* eigenvalues repel as the joint probability density has a zero (of <math>\beta</math>th order) for coinciding eigenvalues <math>\lambda_j=\lambda_i</math>.
  

2020년 11월 13일 (금) 19:24 기준 최신판

introduction

  • The Gaussian orthogonal ensemble GOE(n) is described by the Gaussian measure with density

\[ \frac{1}{Z_{\text{GOE}(n)}} e^{- \frac{n}{4} \mathrm{tr} H^2} \] on the space of \(n\times n\) real symmetric matrices \(H=(H_{ij})\)

  • Its distribution is invariant under orthogonal conjugation, and it models Hamiltonians with time-reversal symmetry


level spacing of eigenvalues

  • From the ordered sequence of eigenvalues \(\lambda_1 < \ldots < \lambda_n < \lambda_{n+1} < \ldots\), one defines the normalized spacings \(s = (\lambda_{n+1} - \lambda_n)/\langle s \rangle\), where \(\langle s \rangle =\langle \lambda_{n+1} - \lambda_n \rangle\) is the mean spacing.
  • The probability distribution of spacings is approximately given by,

\[ p_1(s) = \frac{\pi}{2}s\, \mathrm{e}^{-\frac{\pi}{4} s^2} \] for the orthogonal ensemble GOE \(\beta=1\)


joint eigenvalue distribution

  • The joint probability density for the eigenvalues λ1,λ2,...,λn of GOE is given by

\[\frac{1}{Z_{\beta, n}} \prod_{k=1}^n e^{-\frac{\beta n}{4}\lambda_k^2}\prod_{i<j}\left|\lambda_j-\lambda_i\right|^\beta~, \quad (1)\] where the Dyson index \(\beta=1\), counts the number of real components per matrix element; Zβ,n is a normalisation constant which can be explicitly computed as Selberg integral.

  • eigenvalues repel as the joint probability density has a zero (of \(\beta\)th order) for coinciding eigenvalues \(\lambda_j=\lambda_i\).


computational resource