"Word2vec"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* document similarity
 
* document similarity
 
** https://rare-technologies.com/performance-shootout-of-nearest-neighbours-contestants/
 
** https://rare-technologies.com/performance-shootout-of-nearest-neighbours-contestants/
 +
** Using gensim’s memory-friendly streaming API I then converted these plain text tokens to TF-IDF vectors, ran Singular Value Decomposition (SVD) on this TF-IDF matrix to build a latent semantic analysis (LSA) model and finally stored each Wikipedia document as a 500-dimensional LSA vector to disk.
  
  

2017년 5월 2일 (화) 07:59 판

gensim


memo


computational resource