"Dwork pencil of quintic threefolds"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 4개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry | * The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry | ||
* 1,1,27,2875, 698005, | * 1,1,27,2875, 698005, | ||
− | * On a general quintic threefold | + | * On a general quintic threefold <math>Y\subset \mathbb{P}^4</math> there are 2875 lines |
==memo== | ==memo== | ||
* http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846 | * http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846 | ||
− | + | * http://mathoverflow.net/questions/215775/asymptotic-int-m-mathrmexp-mathbfe-leftn-fract2-pi-i-right-lef | |
==related items== | ==related items== | ||
* [[Mirror symmetry]] | * [[Mirror symmetry]] | ||
− | + | * [[Dwork K3 surfaces]] | |
==expositions== | ==expositions== | ||
19번째 줄: | 19번째 줄: | ||
==articles== | ==articles== | ||
+ | * Fité, Francesc, Kiran S. Kedlaya, and Andrew V. Sutherland. “Sato-Tate Groups of Some Weight 3 Motives.” arXiv:1212.0256 [math], December 2, 2012. http://arxiv.org/abs/1212.0256. | ||
* Oguiso, Keiji, and Xun Yu. “Automorphism Groups of Smooth Quintic Threefolds.” arXiv:1504.05011 [math], April 20, 2015. http://arxiv.org/abs/1504.05011. | * Oguiso, Keiji, and Xun Yu. “Automorphism Groups of Smooth Quintic Threefolds.” arXiv:1504.05011 [math], April 20, 2015. http://arxiv.org/abs/1504.05011. | ||
* Segal, Ed, and Richard P. Thomas. ‘Quintic Threefolds and Fano Elevenfolds’. arXiv:1410.6829 [math], 24 October 2014. http://arxiv.org/abs/1410.6829. | * Segal, Ed, and Richard P. Thomas. ‘Quintic Threefolds and Fano Elevenfolds’. arXiv:1410.6829 [math], 24 October 2014. http://arxiv.org/abs/1410.6829. | ||
24번째 줄: | 25번째 줄: | ||
* Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836. | * Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836. | ||
* Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x. | * Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x. | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 18:44 기준 최신판
introduction
- The derived category of coherent sheaves on a general quintic threefold is a central object in mirror symmetry
- 1,1,27,2875, 698005,
- On a general quintic threefold \(Y\subset \mathbb{P}^4\) there are 2875 lines
memo
- http://mathoverflow.net/questions/160561/the-classical-number-2875-of-lines-on-the-quintic-as-a-dt-invariant/160846#160846
- http://mathoverflow.net/questions/215775/asymptotic-int-m-mathrmexp-mathbfe-leftn-fract2-pi-i-right-lef
expositions
- Pandharipande, R., and R. P. Thomas. 2011. “13/2 Ways of Counting Curves.” arXiv:1111.1552 [hep-Th], November. http://arxiv.org/abs/1111.1552.
- Zagier, https://docs.google.com/file/d/0B8XXo8Tve1cxUV9VQ3dtZjhMYjA/edit
articles
- Fité, Francesc, Kiran S. Kedlaya, and Andrew V. Sutherland. “Sato-Tate Groups of Some Weight 3 Motives.” arXiv:1212.0256 [math], December 2, 2012. http://arxiv.org/abs/1212.0256.
- Oguiso, Keiji, and Xun Yu. “Automorphism Groups of Smooth Quintic Threefolds.” arXiv:1504.05011 [math], April 20, 2015. http://arxiv.org/abs/1504.05011.
- Segal, Ed, and Richard P. Thomas. ‘Quintic Threefolds and Fano Elevenfolds’. arXiv:1410.6829 [math], 24 October 2014. http://arxiv.org/abs/1410.6829.
- Shparlinski, Igor E. “On the Density of Integer Points on the Generalised Markoff-Hurwitz and Dwork Hypersurfaces.” arXiv:1404.5866 [math], April 23, 2014. http://arxiv.org/abs/1404.5866.
- Candelas, Philip, Xenia de la Ossa, Bert van Geemen, and Duco van Straten. 2012. “Lines on the Dwork Pencil of Quintic Threefolds.” Advances in Theoretical and Mathematical Physics 16 (6): 1779–1836.
- Musta\ct\va, Anca. 2013. “Degree 1 Curves in the Dwork Pencil and the Mirror Quintic.” Mathematische Annalen 355 (1): 97–130. doi:10.1007/s00208-011-0668-x.