"Non-unitary c(2,2k+1) minimal models"의 두 판 사이의 차이
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>introduction</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">central charge and conformal dimensions</h5> | ||
+ | |||
+ | * central charge<br><math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math><br> | ||
+ | * primary fields have conformal dimensions<br><math>h_j=-\frac{j(2k-1-j)}{2(2k+1)}</math>, <math>j\in \{0,1,\cdots,k-1\}</math> or by setting i=j+1<br><math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math> <math>i\in \{1,2, \cdots,k\}</math> (this is An's notation in his paper)<br> | ||
+ | * effective central charge<br><math>c_{eff}=c-24h_{min}</math><br><math>c_{eff}=\frac{2k-2}{2k+1}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>character formula and Andrew-Gordon identity</h5> | ||
+ | |||
+ | * [[Andrews-Gordon identity]] | ||
+ | |||
+ | * character functions<br><math>\chi_i(\tau)=q^{h_i-c/24}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math><br> | ||
+ | * to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also<br> | ||
+ | * [[bosonic characters of Virasoro minimal models(Rocha-Caridi formula)]]<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>different expressions for central charge</h5> | ||
+ | |||
+ | * from above<br><math>h_i-c(2,2k+1)/24</math><br><math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math><br><math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math>, <math>i\in \{1,2, \cdots,k\}</math><br> | ||
+ | * L-values<br><math>\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>Dirichlet L-function</h5> | ||
+ | |||
+ | * [http://pythagoras0.springnote.com/pages/4562847 디리클레 L-함수] | ||
+ | |||
+ | <math>L(-1, \chi) = \frac{1}{2f}\sum_{n=1}^{\infty}{\chi(n)}{n}</math> | ||
+ | |||
+ | <math>n\geq 1</math> 이라 하자. 일반적으로 <math>\chi\neq 1</math>인 primitive 준동형사상 <math>\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}</math>에 대하여 <math>L(1-n,\chi)</math>의 값은 다음과 같이 주어진다 | ||
+ | |||
+ | <math>L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})</math> | ||
+ | |||
+ | <math>L(-1,\chi)=L(1-2,\chi)=-\frac{f}{2}\sum_{(a,f)=1}}\chi(a)B_2(\frac{a}{f})</math> | ||
+ | |||
+ | 여기서 <math>B_n(x)</math> 는 [http://pythagoras0.springnote.com/pages/4346717 베르누이 다항식](<math>B_0(x)=1</math>, <math>B_1(x)=x-1/2</math>, <math>B_2(x)=x^2-x+1/6</math>, <math>\cdots</math>) | ||
+ | |||
+ | |||
+ | |||
+ | Let N=2k+1 | ||
+ | |||
+ | <math>\omega=\exp \frac{2\pi i}{2k+1}</math> | ||
+ | |||
+ | G: group of Dirichlet characters of conductor N which maps -1 to 1 | ||
+ | |||
+ | G has order k and cyclic generated by <math>\chi</math> | ||
+ | |||
+ | <math>c_i=\frac{1}{2k}\sum_{s=1}^{k}\omega^{is}L(-1,\chi^s)</math> | ||
+ | |||
+ | Then, | ||
+ | |||
+ | <math>c_i=-\frac{2k+1}{12}+\frac{j(N-j)}{2N}</math> | ||
+ | |||
+ | where j satisfies <math>\chi(j)=\omega^{k-i}</math> | ||
+ | |||
+ | Vacuum energy is given by | ||
+ | |||
+ | <math>d_i=\frac{1}{2}L(-1,\chi^{k})-c_i</math> | ||
+ | |||
+ | |||
+ | |||
+ | Since | ||
+ | |||
+ | <math>L(-1,\chi^{k})=\frac{N-1}{12}=\frac{k}{6}</math>, the vacuum energy | ||
+ | |||
+ | <math>d_i=\frac{1}{2}L(-1,\chi^{k})-c_i=\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}=\frac{j(2k+1-j)}{2(2k+1)}-\frac{k+1}{12}</math>. | ||
+ | |||
+ | These are equal to <math>{h_i-c/24}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | # k := 5<br> f[k_, j_] := (2 k)/<br> 24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1)))<br> Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm<br> Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm<br> d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24<br> Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm<br> Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm<br> cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +<br> 1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24<br> Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm<br> Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | # w := Exp[2 Pi*I*1/k]<br> L[j_] := -(2 k + 1)/2*<br> Sum[DirichletCharacter[2 k + 1, j, a]*<br> BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}]<br> c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}]<br> Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],<br> Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},<br> PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}]<br> Table[c[i], {i, 1, 2 k}] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>history</h5> | ||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>related items</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * http://www.proofwiki.org/wiki/ | ||
+ | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>books</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * [[2010년 books and articles]]<br> | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>expositions</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>question and answers(Math Overflow)</h5> | ||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>blogs</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * http://ncatlab.org/nlab/show/HomePage | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>experts on the field</h5> | ||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>links</h5> | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * http://functions.wolfram.com/ |
2010년 10월 9일 (토) 03:25 판
introduction
central charge and conformal dimensions
- central charge
\(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\) - primary fields have conformal dimensions
\(h_j=-\frac{j(2k-1-j)}{2(2k+1)}\), \(j\in \{0,1,\cdots,k-1\}\) or by setting i=j+1
\(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\) \(i\in \{1,2, \cdots,k\}\) (this is An's notation in his paper) - effective central charge
\(c_{eff}=c-24h_{min}\)
\(c_{eff}=\frac{2k-2}{2k+1}\)
character formula and Andrew-Gordon identity
- character functions
\(\chi_i(\tau)=q^{h_i-c/24}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}\) - to understand the factor \(q^{h-c/24}\), look at the finite size effect page also
- bosonic characters of Virasoro minimal models(Rocha-Caridi formula)
different expressions for central charge
- from above
\(h_i-c(2,2k+1)/24\)
\(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\)
\(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\), \(i\in \{1,2, \cdots,k\}\) - L-values
\(\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}\)
Dirichlet L-function
\(L(-1, \chi) = \frac{1}{2f}\sum_{n=1}^{\infty}{\chi(n)}{n}\)
\(n\geq 1\) 이라 하자. 일반적으로 \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}\)에 대하여 \(L(1-n,\chi)\)의 값은 다음과 같이 주어진다
\(L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})\)
\(L(-1,\chi)=L(1-2,\chi)=-\frac{f}{2}\sum_{(a,f)=1}}\chi(a)B_2(\frac{a}{f})\)
여기서 \(B_n(x)\) 는 베르누이 다항식(\(B_0(x)=1\), \(B_1(x)=x-1/2\), \(B_2(x)=x^2-x+1/6\), \(\cdots\))
Let N=2k+1
\(\omega=\exp \frac{2\pi i}{2k+1}\)
G: group of Dirichlet characters of conductor N which maps -1 to 1
G has order k and cyclic generated by \(\chi\)
\(c_i=\frac{1}{2k}\sum_{s=1}^{k}\omega^{is}L(-1,\chi^s)\)
Then,
\(c_i=-\frac{2k+1}{12}+\frac{j(N-j)}{2N}\)
where j satisfies \(\chi(j)=\omega^{k-i}\)
Vacuum energy is given by
\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i\)
Since
\(L(-1,\chi^{k})=\frac{N-1}{12}=\frac{k}{6}\), the vacuum energy
\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i=\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}=\frac{j(2k+1-j)}{2(2k+1)}-\frac{k+1}{12}\).
These are equal to \({h_i-c/24}\)
- k := 5
f[k_, j_] := (2 k)/
24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1)))
Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm
Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm
d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24
Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm
Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm
cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +
1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24
Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
- w := Exp[2 Pi*I*1/k]
L[j_] := -(2 k + 1)/2*
Sum[DirichletCharacter[2 k + 1, j, a]*
BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}]
c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}]
Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],
Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},
PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}]
Table[c[i], {i, 1, 2 k}]
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field