"Symmetrizable generalized Cartan matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
2번째 줄: 2번째 줄:
 
* [[Generalized Cartan matrix]]
 
* [[Generalized Cartan matrix]]
 
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
 
* symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
 +
;def
 +
A [[generalized Cartan matrix]] $A$ is symmetrisable if there exists a non-singular diagonal matrix $D$ and a symmetric matrix $B$ such that $A=DB$.
  
  

2015년 4월 2일 (목) 00:06 판

introduction

  • Generalized Cartan matrix
  • symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
def

A generalized Cartan matrix $A$ is symmetrisable if there exists a non-singular diagonal matrix $D$ and a symmetric matrix $B$ such that $A=DB$.


example

  • Cartan matrix of $G_2$

$$ A=\left( \begin{array}{cc} 2 & -1 \\ -3 & 2 \\ \end{array} \right) $$

  • take $D$ as follows :

$$ D=\left( \begin{array}{cc} 3 & 0 \\ 0 & 1 \\ \end{array} \right) $$

  • Then $DA=A^{t}D$ is a symmetric matrix

$$ \left( \begin{array}{cc} 6 & -3 \\ -3 & 2 \\ \end{array} \right) $$


related items


computational resource