"Integrable perturbations of Ising model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “* Princeton companion to mathematics(Companion_to_Mathematics.pdf)” 문자열을 “” 문자열로) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | * energy perturbation '''[Kau49]''', '''[MTW77]''' | + | * energy perturbation '''[Kau49]''', '''[MTW77]''' |
** related to A1 | ** related to A1 | ||
** Ising field theory | ** Ising field theory | ||
− | * magnetic perturbation'''[Zam89]''' | + | * magnetic perturbation'''[Zam89]''' |
** related to E8 | ** related to E8 | ||
− | |||
− | |||
− | |||
==Ising field theory== | ==Ising field theory== | ||
− | * the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger) | + | * the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger) |
** "kink" states (boundaries between regions of differing spin) = basic objects of the theory | ** "kink" states (boundaries between regions of differing spin) = basic objects of the theory | ||
** called quasiparticle | ** called quasiparticle | ||
− | |||
− | + | ||
− | |||
− | |||
==history== | ==history== | ||
* Soon after Zamolodchikov’s first paper '''[Zam]''' appeared, | * Soon after Zamolodchikov’s first paper '''[Zam]''' appeared, | ||
− | * Fateev and Zamolodchikov conjectured in [FZ90] that | + | * Fateev and Zamolodchikov conjectured in '''[FZ90]''' that |
** if you take a minimal model CFT constructed from a compact Lie algebra g via the coset construction and perturb it in a particular way, then you obtain the affine Toda field theory (ATFT) associated with g, which is an integrable field theory. | ** if you take a minimal model CFT constructed from a compact Lie algebra g via the coset construction and perturb it in a particular way, then you obtain the affine Toda field theory (ATFT) associated with g, which is an integrable field theory. | ||
− | ** This was confirmed in [EY] and [HoM]. | + | ** This was confirmed in '''[EY]''' and '''[HoM]'''. |
* If you do this with g = E8, you arrive at the conjectured integrable field theory investigated by Zamolodchikov and described in the previous paragraph. | * If you do this with g = E8, you arrive at the conjectured integrable field theory investigated by Zamolodchikov and described in the previous paragraph. | ||
* That is, if we take the E8 ATFT as a starting point, then the assumptions (Z1)–(Z4) become deductions. | * That is, if we take the E8 ATFT as a starting point, then the assumptions (Z1)–(Z4) become deductions. | ||
− | * [EY]T. Eguchi and S.-K. Yang, Deformations of conformal field theories and soliton equations, Phys. Lett. B 224 (1989), 373-8 B | + | * '''[EY]'''T. Eguchi and S.-K. Yang, Deformations of conformal field theories and soliton equations, Phys. Lett. B 224 (1989), 373-8 B |
− | * [HoM]T.J. Hollowood and P.Mansfield, Rational conformal theories at, and away from criticality as Toda field theories, Phys. Lett. B226 (1989) 73-79 | + | * '''[HoM]'''T.J. Hollowood and P.Mansfield, Rational conformal theories at, and away from criticality as Toda field theories, Phys. Lett. B226 (1989) 73-79 |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
− | + | ||
− | + | ||
==related items== | ==related items== | ||
44번째 줄: | 38번째 줄: | ||
* [[exact S-matrices in ATFT]] | * [[exact S-matrices in ATFT]] | ||
− | + | ||
− | + | ||
==encyclopedia== | ==encyclopedia== | ||
55번째 줄: | 49번째 줄: | ||
− | + | ||
− | + | ||
==books== | ==books== | ||
− | + | ||
− | * [[2010년 books and articles]] | + | * [[2010년 books and articles]] |
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
− | + | ||
==expositions== | ==expositions== | ||
− | * David Borthwick and Skip Garibaldi, “Did a 1-dimensional magnet detect a 248-dimensional Lie algebra?,” 1012.5407 (December 24, 2010), http://arxiv.org/abs/1012.5407. | + | * David Borthwick and Skip Garibaldi, “Did a 1-dimensional magnet detect a 248-dimensional Lie algebra?,” 1012.5407 (December 24, 2010), http://arxiv.org/abs/1012.5407. |
− | * Affleck, Ian. 2010. “Solid-state physics: Golden ratio seen in a magnet”. <em>Nature</em> 464 (7287) (3월 18): 362-363. doi:[http://dx.doi.org/10.1038/464362a 10.1038/464362a]. | + | * Affleck, Ian. 2010. “Solid-state physics: Golden ratio seen in a magnet”. <em>Nature</em> 464 (7287) (3월 18): 362-363. doi:[http://dx.doi.org/10.1038/464362a 10.1038/464362a]. |
− | + | ||
− | + | ||
==articles== | ==articles== | ||
− | * Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:[http://dx.doi.org/10.1126/science.1180085 10.1126/science.1180085]. | + | * Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:[http://dx.doi.org/10.1126/science.1180085 10.1126/science.1180085]. |
− | * [http://dx.doi.org/10.1088/1742-5468/2008/01/P01017 On the integrable structure of the Ising model] | + | * [http://dx.doi.org/10.1088/1742-5468/2008/01/P01017 On the integrable structure of the Ising model] |
** Alessandro Nigro J. Stat. Mech. (2008) P01017 | ** Alessandro Nigro J. Stat. Mech. (2008) P01017 | ||
− | * [http://dx.doi.org/10.1016/S0550-3213%2898%2900063-7 Non-integrable aspects of the multi-frequency sine-Gordon model] | + | * [http://dx.doi.org/10.1016/S0550-3213%2898%2900063-7 Non-integrable aspects of the multi-frequency sine-Gordon model] |
** G. Delfinoa and G. Mussardo, 1998 | ** G. Delfinoa and G. Mussardo, 1998 | ||
− | * [http://dx.doi.org/10.1016/0550-3213%2895%2900464-4 The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc] | + | * [http://dx.doi.org/10.1016/0550-3213%2895%2900464-4 The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc] |
** G. Delfinoa and G. Mussardo, 1995 | ** G. Delfinoa and G. Mussardo, 1995 | ||
− | * [http://dx.doi.org/10.1016/0370-2693%2894%2991107-X Lattice Ising model in a field: E8 scattering theory] | + | * [http://dx.doi.org/10.1016/0370-2693%2894%2991107-X Lattice Ising model in a field: E8 scattering theory] |
** V. V. Bazhanov, B. Nienhuis, S. O. Warnaar, 1994 | ** V. V. Bazhanov, B. Nienhuis, S. O. Warnaar, 1994 | ||
* '''[Zam]'''[http://dx.doi.org/10.1142/S0217751X8900176X INTEGRALS OF MOTION AND S-MATRIX OF THE (SCALED) T = Tc ISING MODEL WITH MAGNETIC FIELD] | * '''[Zam]'''[http://dx.doi.org/10.1142/S0217751X8900176X INTEGRALS OF MOTION AND S-MATRIX OF THE (SCALED) T = Tc ISING MODEL WITH MAGNETIC FIELD] | ||
* '''[FZ90]'''V. A. Fateev and A. B. Zamolodchikov. Conformal field theory and purely elastic S-matrices. Int. J. Mod. Phys., A5 (6): 1025-1048 | * '''[FZ90]'''V. A. Fateev and A. B. Zamolodchikov. Conformal field theory and purely elastic S-matrices. Int. J. Mod. Phys., A5 (6): 1025-1048 | ||
− | * '''[Zam89]'''Integrable field theory from conformal field theory | + | * '''[Zam89]'''Integrable field theory from conformal field theory |
** A.B. Zamolodchikov, Adv. Stud. Pure Math. 19, 641-674 (1989) | ** A.B. Zamolodchikov, Adv. Stud. Pure Math. 19, 641-674 (1989) | ||
− | * [http://dx.doi.org/10.1103/PhysRevLett.46.757 Ising Field Theory: Quadratic Difference Equations for the n-Point Green's Functions on the Lattice] | + | * [http://dx.doi.org/10.1103/PhysRevLett.46.757 Ising Field Theory: Quadratic Difference Equations for the n-Point Green's Functions on the Lattice] |
− | ** Barry M. McCoy, | + | ** Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu, Phys. Rev. Lett. 46, 757–760 (1981) |
− | * '''[MTW77]'''[http://dx.doi.org/10.1103/PhysRevLett.38.793 Two-Dimensional Ising Model as an Exactly Solvable Relativistic Quantum Field Theory: Explicit Formulas for n-Point Functions] | + | * '''[MTW77]'''[http://dx.doi.org/10.1103/PhysRevLett.38.793 Two-Dimensional Ising Model as an Exactly Solvable Relativistic Quantum Field Theory: Explicit Formulas for n-Point Functions] |
− | ** Barry M. McCoy, | + | ** Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu, Phys. Rev. Lett. 38, 793–796 (1977) |
− | * '''[Kau49]'''[http://dx.doi.org/10.1103/PhysRev.76.1232 Statistics. II. Partition Function Evaluated by Spinor Analysis] | + | * '''[Kau49]'''[http://dx.doi.org/10.1103/PhysRev.76.1232 Statistics. II. Partition Function Evaluated by Spinor Analysis] |
** Bruria Kaufman, Phys. Rev. 76, 1232–1243 (1949) Crystal | ** Bruria Kaufman, Phys. Rev. 76, 1232–1243 (1949) Crystal | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://dx.doi.org/10.1038/464362a | * http://dx.doi.org/10.1038/464362a | ||
− | + | ||
− | + | ||
==question and answers(Math Overflow)== | ==question and answers(Math Overflow)== | ||
119번째 줄: | 106번째 줄: | ||
* http://mathoverflow.net/questions/32315/has-the-lie-group-e8-really-been-detected-experimentally | * http://mathoverflow.net/questions/32315/has-the-lie-group-e8-really-been-detected-experimentally | ||
* http://mathoverflow.net/questions/32432/does-the-quantum-subgroup-of-quantum-su-2-called-e-8-have-anything-at-all-to-do-w | * http://mathoverflow.net/questions/32432/does-the-quantum-subgroup-of-quantum-su-2-called-e-8-have-anything-at-all-to-do-w | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
− | |||
[[분류:math and physics]] | [[분류:math and physics]] |
2013년 2월 24일 (일) 12:28 판
introduction
- energy perturbation [Kau49], [MTW77]
- related to A1
- Ising field theory
- magnetic perturbation[Zam89]
- related to E8
Ising field theory
- the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger)
- "kink" states (boundaries between regions of differing spin) = basic objects of the theory
- called quasiparticle
history
- Soon after Zamolodchikov’s first paper [Zam] appeared,
- Fateev and Zamolodchikov conjectured in [FZ90] that
- if you take a minimal model CFT constructed from a compact Lie algebra g via the coset construction and perturb it in a particular way, then you obtain the affine Toda field theory (ATFT) associated with g, which is an integrable field theory.
- This was confirmed in [EY] and [HoM].
- If you do this with g = E8, you arrive at the conjectured integrable field theory investigated by Zamolodchikov and described in the previous paragraph.
- That is, if we take the E8 ATFT as a starting point, then the assumptions (Z1)–(Z4) become deductions.
- [EY]T. Eguchi and S.-K. Yang, Deformations of conformal field theories and soliton equations, Phys. Lett. B 224 (1989), 373-8 B
- [HoM]T.J. Hollowood and P.Mansfield, Rational conformal theories at, and away from criticality as Toda field theories, Phys. Lett. B226 (1989) 73-79
- http://www.google.com/search?hl=en&tbs=tl:1&q=
encyclopedia
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
expositions
- David Borthwick and Skip Garibaldi, “Did a 1-dimensional magnet detect a 248-dimensional Lie algebra?,” 1012.5407 (December 24, 2010), http://arxiv.org/abs/1012.5407.
- Affleck, Ian. 2010. “Solid-state physics: Golden ratio seen in a magnet”. Nature 464 (7287) (3월 18): 362-363. doi:10.1038/464362a.
articles
- Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:10.1126/science.1180085.
- On the integrable structure of the Ising model
- Alessandro Nigro J. Stat. Mech. (2008) P01017
- Non-integrable aspects of the multi-frequency sine-Gordon model
- G. Delfinoa and G. Mussardo, 1998
- The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc
- G. Delfinoa and G. Mussardo, 1995
- Lattice Ising model in a field: E8 scattering theory
- V. V. Bazhanov, B. Nienhuis, S. O. Warnaar, 1994
- [Zam]INTEGRALS OF MOTION AND S-MATRIX OF THE (SCALED) T = Tc ISING MODEL WITH MAGNETIC FIELD
- [FZ90]V. A. Fateev and A. B. Zamolodchikov. Conformal field theory and purely elastic S-matrices. Int. J. Mod. Phys., A5 (6): 1025-1048
- [Zam89]Integrable field theory from conformal field theory
- A.B. Zamolodchikov, Adv. Stud. Pure Math. 19, 641-674 (1989)
- Ising Field Theory: Quadratic Difference Equations for the n-Point Green's Functions on the Lattice
- Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu, Phys. Rev. Lett. 46, 757–760 (1981)
- [MTW77]Two-Dimensional Ising Model as an Exactly Solvable Relativistic Quantum Field Theory: Explicit Formulas for n-Point Functions
- Barry M. McCoy, Craig A. Tracy, Tai Tsun Wu, Phys. Rev. Lett. 38, 793–796 (1977)
- [Kau49]Statistics. II. Partition Function Evaluated by Spinor Analysis
- Bruria Kaufman, Phys. Rev. 76, 1232–1243 (1949) Crystal
- http://dx.doi.org/10.1038/464362a