"Integrable perturbations of Ising model"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
62번째 줄: 62번째 줄:
 
* Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:[http://dx.doi.org/10.1126/science.1180085 10.1126/science.1180085].  
 
* Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:[http://dx.doi.org/10.1126/science.1180085 10.1126/science.1180085].  
 
* Alessandro Nigro [http://dx.doi.org/10.1088/1742-5468/2008/01/P01017 On the integrable structure of the Ising model] J. Stat. Mech. (2008) P01017
 
* Alessandro Nigro [http://dx.doi.org/10.1088/1742-5468/2008/01/P01017 On the integrable structure of the Ising model] J. Stat. Mech. (2008) P01017
 +
* Delfino, Gesualdo. 2003. “Integrable field theory and critical phenomena. The Ising model in a magnetic field”. arXiv:hep-th/0312119 (12월 11). doi:10.1088/0305-4470/37/14/R01. http://arxiv.org/abs/hep-th/0312119.
 
* G. Delfinoa and G. Mussardo [http://dx.doi.org/10.1016/S0550-3213%2898%2900063-7 Non-integrable aspects of the multi-frequency sine-Gordon model], 1998
 
* G. Delfinoa and G. Mussardo [http://dx.doi.org/10.1016/S0550-3213%2898%2900063-7 Non-integrable aspects of the multi-frequency sine-Gordon model], 1998
 
* G. Delfinoa and G. Mussardo [http://dx.doi.org/10.1016/0550-3213%2895%2900464-4 The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc], 1995
 
* G. Delfinoa and G. Mussardo [http://dx.doi.org/10.1016/0550-3213%2895%2900464-4 The spin-spin correlation function in the two-dimensional Ising model in a magnetic field at T = Tc], 1995

2013년 4월 5일 (금) 16:34 판

introduction

  • energy perturbation [Kau49], [MTW77]
    • related to A1
    • Ising field theory
  • magnetic perturbation[Zam89]
    • related to E8


Ising field theory

  • the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger)
    • "kink" states (boundaries between regions of differing spin) = basic objects of the theory
    • called quasiparticle


history

  • Soon after Zamolodchikov’s first paper [Zam] appeared,
  • Fateev and Zamolodchikov conjectured in [FZ90] that
    • if you take a minimal model CFT constructed from a compact Lie algebra $\mathfrak{g}$ via the coset construction and perturb it in a particular way, then you obtain the affine Toda field theory (ATFT) associated with $\mathfrak{g}$, which is an integrable field theory.
    • This was confirmed in [EY] and [HoM].
  • If you do this with $\mathfrak{g}=E_8$, you arrive at the conjectured integrable field theory investigated by Zamolodchikov and described in the previous paragraph.
  • That is, if we take the $E_8$ ATFT as a starting point, then the assumptions (Z1)–(Z4) become deductions.
  • http://www.google.com/search?hl=en&tbs=tl:1&q=


related items

encyclopedia




books


expositions


articles

question and answers(Math Overflow)