"Integrable perturbations of Ising model"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
96번째 줄: 96번째 줄:
 
==articles==
 
==articles==
 
* Koca, Mehmet, and Nazife Ozdes Koca. “Radii of the E8 Gosset Circles as the Mass Excitations in the Ising Model.” arXiv:1204.4567 [hep-Th, Physics:math-Ph], April 20, 2012. http://arxiv.org/abs/1204.4567.
 
* Koca, Mehmet, and Nazife Ozdes Koca. “Radii of the E8 Gosset Circles as the Mass Excitations in the Ising Model.” arXiv:1204.4567 [hep-Th, Physics:math-Ph], April 20, 2012. http://arxiv.org/abs/1204.4567.
 +
* Kostant, Bertram. “Experimental Evidence for the Occurrence of E8 in Nature and the Radii of the Gosset Circles.” arXiv:1003.0046 [math-Ph], February 28, 2010. http://arxiv.org/abs/1003.0046.
 
* Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:[http://dx.doi.org/10.1126/science.1180085 10.1126/science.1180085].  
 
* Coldea, R., D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer. 2010. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science 327, no. 5962 (January 8): 177 -180. doi:[http://dx.doi.org/10.1126/science.1180085 10.1126/science.1180085].  
 
* Alessandro Nigro [http://dx.doi.org/10.1088/1742-5468/2008/01/P01017 On the integrable structure of the Ising model] J. Stat. Mech. (2008) P01017
 
* Alessandro Nigro [http://dx.doi.org/10.1088/1742-5468/2008/01/P01017 On the integrable structure of the Ising model] J. Stat. Mech. (2008) P01017

2014년 6월 19일 (목) 19:53 판

introduction

  • energy perturbation [Kau49], [MTW77]
    • related to A1
    • Ising field theory
  • magnetic perturbation[Zam89]
    • related to E8


Ising field theory

  • the continuum limit of the Ising model is made to look like a field theory only through the application of a certain transformation (Jordan-Winger)
    • "kink" states (boundaries between regions of differing spin) = basic objects of the theory
    • called quasiparticle


constant TBA equation

Y-system


constant Y-system solution

  • constant Y-system

$$ y_{i}^2=\prod _{j\in I} (1+y_{j})^{\mathcal{I}(X)_{ij}} $$

  • solution

$$ \left\{2+2 \sqrt{2},5+4 \sqrt{2},11+8 \sqrt{2},16+12 \sqrt{2},42+30 \sqrt{2},56+40 \sqrt{2},152+108 \sqrt{2},543+384 \sqrt{2}\right\} $$


Klassen-Melzer solution

$$ \mathcal{I}(E_8)(\mathcal{C}(E_8))^{-1}= \left( \begin{array}{cccccccc} 3 & 4 & 6 & 6 & 8 & 8 & 10 & 12 \\ 4 & 7 & 8 & 10 & 12 & 14 & 16 & 20 \\ 6 & 8 & 11 & 12 & 16 & 16 & 20 & 24 \\ 6 & 10 & 12 & 15 & 18 & 20 & 24 & 30 \\ 8 & 12 & 16 & 18 & 23 & 24 & 30 & 36 \\ 8 & 14 & 16 & 20 & 24 & 27 & 32 & 40 \\ 10 & 16 & 20 & 24 & 30 & 32 & 39 & 48 \\ 12 & 20 & 24 & 30 & 36 & 40 & 48 & 59 \\ \end{array} \right) $$

  • The TBA equation is

$$ \epsilon_i=\sum_{j}N_{ij}\log (1+e^{-\epsilon_j}) $$ or

$$ e^{\epsilon_i}=\prod_{j}(1+e^{-\epsilon_j})^{N_{ij}} $$

  • we have the relationship $y_i=e^{\epsilon_i}$

history

  • Soon after Zamolodchikov’s first paper [Zam] appeared,
  • Fateev and Zamolodchikov conjectured in [FZ90] that
    • if you take a minimal model CFT constructed from a compact Lie algebra $\mathfrak{g}$ via the coset construction and perturb it in a particular way, then you obtain the affine Toda field theory (ATFT) associated with $\mathfrak{g}$, which is an integrable field theory.
    • This was confirmed in [EY] and [HoM].
  • If you do this with $\mathfrak{g}=E_8$, you arrive at the conjectured integrable field theory investigated by Zamolodchikov and described in the previous paragraph.
  • That is, if we take the $E_8$ ATFT as a starting point, then the assumptions (Z1)–(Z4) become deductions.
  • http://www.google.com/search?hl=en&tbs=tl:1&q=


related items


computational resource


expositions


articles

question and answers(Math Overflow)