"Representations of symmetrizable Kac-Moody algebras"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
| 1번째 줄: | 1번째 줄: | ||
| + | ==introduction== | ||
| + | * Let $L(A)$ be a symmetrizable Kac-Moody algebra | ||
| + | * the category <math>\mathcal{O}</math> | ||
| + | * Integrable modules | ||
| + | |||
| + | ==the category $\mathcal{O}$== | ||
| + | * $V$ is an object in $\mathcal{O}$ | ||
| + | # $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$ | ||
| + | # $\dim V_{\lambda}$ is finite for each $\lambda\in \mathfrak{h}^{*}$ | ||
| + | # there exists a finite set $\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}$ such that each $\lambda$ with $V_{\lambda}\neq 0$ satisfies $\lambda \prec \lambda_i$ for some $i\in \{1,\cdots, s\}$ | ||
| + | |||
| + | |||
| + | ==integrable module== | ||
| + | * An $L(A)$-module $V$ is called integrable if | ||
| + | $$ | ||
| + | V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda} | ||
| + | $$ | ||
| + | and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i$ | ||
| + | ;Thm | ||
| + | Let $L(A)$ be a symmetrizable Kac-Moody algebra and $L(\lambda)$ be an irreducible $L(A)$-module in the category $\mathcal{O}$. Then $L(\lambda)$ is integrable if and only if $\lambda$ is dominant and integral. | ||
| + | * [[Weyl-Kac character formula]] | ||
| + | |||
| + | |||
| + | ==related items== | ||
| + | * [[BGG category and BGG resolution]] | ||
| + | |||
| + | |||
| + | [[분류:Lie theory]] | ||
| + | [[분류:migrate]] | ||
2020년 11월 13일 (금) 20:56 판
introduction
- Let $L(A)$ be a symmetrizable Kac-Moody algebra
- the category \(\mathcal{O}\)
- Integrable modules
the category $\mathcal{O}$
- $V$ is an object in $\mathcal{O}$
- $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$
- $\dim V_{\lambda}$ is finite for each $\lambda\in \mathfrak{h}^{*}$
- there exists a finite set $\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}$ such that each $\lambda$ with $V_{\lambda}\neq 0$ satisfies $\lambda \prec \lambda_i$ for some $i\in \{1,\cdots, s\}$
integrable module
- An $L(A)$-module $V$ is called integrable if
$$ V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda} $$ and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i$
- Thm
Let $L(A)$ be a symmetrizable Kac-Moody algebra and $L(\lambda)$ be an irreducible $L(A)$-module in the category $\mathcal{O}$. Then $L(\lambda)$ is integrable if and only if $\lambda$ is dominant and integral.