"Maeda conjecture"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: ==introduction== * problem of counting the number of pairs of normalized eigenforms $(f,g) $ of weight $k$ and level $N$ such that $ a_p (f) = a_p (g) $ where $a_p (f) $ denotes the $...) |
imported>Pythagoras0 (section 'articles' added) |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
* problem of counting the number of pairs of normalized eigenforms $(f,g) $ of weight $k$ and level $N$ such that $ a_p (f) = a_p (g) $ where $a_p (f) $ denotes the $p-$th Fourier coefficient of $f$. Here $p$ is a fixed prime. | * problem of counting the number of pairs of normalized eigenforms $(f,g) $ of weight $k$ and level $N$ such that $ a_p (f) = a_p (g) $ where $a_p (f) $ denotes the $p-$th Fourier coefficient of $f$. Here $p$ is a fixed prime. | ||
+ | |||
+ | == articles == | ||
+ | |||
+ | * M. Ram Murty, K. Srinivas, Some remarks related to Maeda's conjecture, http://arxiv.org/abs/1603.00813v1 |
2016년 3월 2일 (수) 23:30 판
introduction
- problem of counting the number of pairs of normalized eigenforms $(f,g) $ of weight $k$ and level $N$ such that $ a_p (f) = a_p (g) $ where $a_p (f) $ denotes the $p-$th Fourier coefficient of $f$. Here $p$ is a fixed prime.
articles
- M. Ram Murty, K. Srinivas, Some remarks related to Maeda's conjecture, http://arxiv.org/abs/1603.00813v1