"Derived functor"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
3번째 줄: 3번째 줄:
 
* extend a left invariant functor to get a derived functor
 
* extend a left invariant functor to get a derived functor
 
* then we get a cohomology theory
 
* then we get a cohomology theory
* e.g. sheaf cohomology of a topological space X with coefficients in a sheaf $\mathcal F$ = the right derived functor of the global section functor  
+
* e.g. sheaf cohomology of a topological space X with coefficients in a sheaf <math>\mathcal F</math> = the right derived functor of the global section functor  
  
  
 
==left invariant functors==
 
==left invariant functors==
 
===global section functor===
 
===global section functor===
* a functor from sheaves on $X$ to abelian groups defined by
+
* a functor from sheaves on <math>X</math> to abelian groups defined by
$$
+
:<math>
 
\mathcal F \mapsto H^{0}(X, \mathcal F)
 
\mathcal F \mapsto H^{0}(X, \mathcal F)
$$
+
</math>
  
 
===invariants===
 
===invariants===
* $G$ : group
+
* <math>G</math> : group
* from modules of $G$ to abelian groups
+
* from modules of <math>G</math> to abelian groups
$$
+
:<math>
 
M\mapsto M^{G}
 
M\mapsto M^{G}
$$
+
</math>
  
  

2020년 11월 13일 (금) 21:21 판

introduction

  • basic tool to define cohomology theory
  • extend a left invariant functor to get a derived functor
  • then we get a cohomology theory
  • e.g. sheaf cohomology of a topological space X with coefficients in a sheaf \(\mathcal F\) = the right derived functor of the global section functor


left invariant functors

global section functor

  • a functor from sheaves on \(X\) to abelian groups defined by

\[ \mathcal F \mapsto H^{0}(X, \mathcal F) \]

invariants

  • \(G\) : group
  • from modules of \(G\) to abelian groups

\[ M\mapsto M^{G} \]


related items