"BCn interpolation polynomials"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 7개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
+ | * introduced by Okounkov as an analogous objects to [[Interpolation Macdonald polynomials]] | ||
+ | |||
+ | |||
===notation=== | ===notation=== | ||
− | * We define relations | + | * We define relations <math>\prec</math> and <math>\succ</math> such that <math>\kappa\prec\lambda</math> (equivalently <math>\lambda\succ\kappa</math>) for two partitions iff <math>\lambda/\kappa</math> is a vertical strip; that is, <math>\kappa_i\le \lambda_i\le \kappa_i+1</math> for all <math>i</math>. |
* we frequently use the product of the form | * we frequently use the product of the form | ||
\[ | \[ | ||
\prod_{(i,j)\in \lambda} f(i,j), | \prod_{(i,j)\in \lambda} f(i,j), | ||
\] | \] | ||
− | where | + | where <math>(i,j)\in \lambda</math> means that <math>1\le i</math> and <math>1\le j\le |
− | \lambda'_i | + | \lambda'_i</math> |
* let us define [[Generalized q-shifted factorials]] | * let us define [[Generalized q-shifted factorials]] | ||
\begin{align} | \begin{align} | ||
32번째 줄: | 35번째 줄: | ||
\prod_{1\le i\le l} (t^{1-i} x;q)_{\lambda_i}. | \prod_{1\le i\le l} (t^{1-i} x;q)_{\lambda_i}. | ||
\end{align} | \end{align} | ||
− | * | + | * <math>\bar{P}^{*(n)}_\lambda(\mu;q,t,s):=\bar{P}^{*(n)}_\lambda(q^{\mu_i} t^{n-i} s;q,t,s)=\bar{P}^{*(n)}_\lambda(q^{\mu_1}t^{n-1},q^{\mu_2}t^{n-2},\cdots, q^{\mu_n}t^{0};q,t,s)</math> |
− | |||
− | == | + | ==definition== |
− | * | + | * Let <math>\lambda</math> be a partition with at most <math>n</math> parts |
− | + | * The BCn interpolation <math>\bar{P}^{*(n)}_\lambda(x_1,\dots,x_n;q,t,s)</math> is the unique polynomial in <math>\Lambda_{t,s}</math> satisfying the following conditions : | |
− | + | # <math>\deg \bar{P}^{*(n)}_\lambda(x;q,t,s)\leq |\lambda|</math> | |
− | \bar{P}^{*(n)}_\lambda(\mu;q,t,s)=0 | + | # <math>\bar{P}^{*(n)}_\lambda(\mu;q,t,s)=0</math> if <math>\quad\lambda\not\subset\mu</math> |
− | \quad\lambda\not\subset\mu, | + | # <math>\bar{P}^{*(n)}_\lambda(\lambda;q,t,s)=\dots</math> (normalization) |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==branching rule== | ==branching rule== | ||
96번째 줄: | 85번째 줄: | ||
(v+1/v-q^{j-1} t^{1-i}s-q^{1-j}t^{i-1}/s) | (v+1/v-q^{j-1} t^{1-i}s-q^{1-j}t^{i-1}/s) | ||
\] | \] | ||
+ | |||
+ | ==BCn q-binomial coefficient== | ||
+ | * see [[BCn q-binomial coefficient]] | ||
+ | :<math> | ||
+ | {\lambda \brack \mu}_{q,t,s} | ||
+ | := | ||
+ | \frac{\bar{P}^{*(n)}_\mu(\lambda;q,t,s t^{1-n})} | ||
+ | {\bar{P}^{*(n)}_\mu(\mu;q,t,s t^{1-n})} | ||
+ | </math> | ||
102번째 줄: | 100번째 줄: | ||
* [[Interpolation Macdonald polynomials]] | * [[Interpolation Macdonald polynomials]] | ||
* [[Lifted BCn interpolation polynomials]] | * [[Lifted BCn interpolation polynomials]] | ||
+ | * [[Koornwinder polynomials]] | ||
+ | * [[BCn interpolation polynomial in Macdonald polynomial basis]] | ||
==articles== | ==articles== | ||
110번째 줄: | 110번째 줄: | ||
[[분류:symmetric polynomials]] | [[분류:symmetric polynomials]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 22:37 기준 최신판
introduction
- introduced by Okounkov as an analogous objects to Interpolation Macdonald polynomials
notation
- We define relations \(\prec\) and \(\succ\) such that \(\kappa\prec\lambda\) (equivalently \(\lambda\succ\kappa\)) for two partitions iff \(\lambda/\kappa\) is a vertical strip; that is, \(\kappa_i\le \lambda_i\le \kappa_i+1\) for all \(i\).
- we frequently use the product of the form
\[ \prod_{(i,j)\in \lambda} f(i,j), \] where \((i,j)\in \lambda\) means that \(1\le i\) and \(1\le j\le \lambda'_i\)
- let us define Generalized q-shifted factorials
\begin{align} C^+_\lambda(x;q,t)&:=\prod_{(i,j)\in \lambda} (1-q^{\lambda_i+j-1} t^{2-\lambda'_j-i} x)\\ &\phantom{:}= \prod_{1\le i\le l} \frac{(q^{\lambda_i} t^{2-l-i} x;q)} {(q^{2\lambda_i} t^{2-2i} x;q)} \prod_{1\le i<j\le l} \frac{(q^{\lambda_i+\lambda_j} t^{3-i-j} x;q)} {(q^{\lambda_i+\lambda_j} t^{2-i-j} x;q)},\\ C^-_\lambda(x;q,t)&:=\prod_{(i,j)\in \lambda} (1-q^{\lambda_i-j} t^{\lambda'_j-i} x)\\ &\phantom{:}= \prod_{1\le i\le l} \frac{(x;q)} {(q^{\lambda_i} t^{l-i} x;q)} \prod_{1\le i<j\le l} \frac{(q^{\lambda_i-\lambda_j} t^{j-i} x;q)} {(q^{\lambda_i-\lambda_j} t^{j-i-1} x;q)},\\ C^0_\lambda(x;q,t)&:=\prod_{(i,j)\in \lambda} (1-q^{j-1} t^{1-i} x)\\ &\phantom{:}= \prod_{1\le i\le l} (t^{1-i} x;q)_{\lambda_i}. \end{align}
- \(\bar{P}^{*(n)}_\lambda(\mu;q,t,s):=\bar{P}^{*(n)}_\lambda(q^{\mu_i} t^{n-i} s;q,t,s)=\bar{P}^{*(n)}_\lambda(q^{\mu_1}t^{n-1},q^{\mu_2}t^{n-2},\cdots, q^{\mu_n}t^{0};q,t,s)\)
definition
- Let \(\lambda\) be a partition with at most \(n\) parts
- The BCn interpolation \(\bar{P}^{*(n)}_\lambda(x_1,\dots,x_n;q,t,s)\) is the unique polynomial in \(\Lambda_{t,s}\) satisfying the following conditions :
- \(\deg \bar{P}^{*(n)}_\lambda(x;q,t,s)\leq |\lambda|\)
- \(\bar{P}^{*(n)}_\lambda(\mu;q,t,s)=0\) if \(\quad\lambda\not\subset\mu\)
- \(\bar{P}^{*(n)}_\lambda(\lambda;q,t,s)=\dots\) (normalization)
branching rule
- thm (3.9)
We have \[ \bar{P}^{*(n+m)}_\lambda(x_1,x_2,\dots x_n,t^{m-1} v,t^{m-2} v,\dots v;q,t,s) = \sum_{\substack{\mu\subset\lambda\\\ell(\mu)\le n}} \psi^{(B)}_{\lambda/\mu}(v,vt^m;q,t,s t^n) \bar{P}^{*(n)}_\mu(x_1,x_2,\dots x_n;q,t,s), \] where \[ \psi^{(B)}_{\lambda/\mu}(v,v';q,t,s) = \frac{ C^0_\lambda(s/v;q,t) C^0_\lambda(t/sv';1/q,1/t)} { C^0_\mu(s/v;q,t) C^0_\mu(t/sv';1/q,1/t)} P_{\lambda/\mu}(\left[\frac{v^k-v^{\prime k}}{1-t^k}\right];q,t) \]
- cor (3.10)
We have \[ \bar{P}^{*(n+1)}_\lambda(x_1,x_2,\dots x_n,v;q,t,s) = \sum_{\substack{\mu'\prec\lambda'\\\mu_{n+1}=0}} \psi^{(b)}_{\lambda/\mu}(v;q,t,s t^n) \bar{P}^{*(n)}_\mu(x_1,x_2,\dots x_n;q,t,s), \] where \[ \psi^{(b)}_{\lambda/\mu}(v;q,t,s) = \psi_{\lambda/\mu}(q,t) \prod_{(i,j)\in \lambda/\mu} (v+1/v-q^{j-1} t^{1-i}s-q^{1-j}t^{i-1}/s) \]
BCn q-binomial coefficient
\[ {\lambda \brack \mu}_{q,t,s} := \frac{\bar{P}^{*(n)}_\mu(\lambda;q,t,s t^{1-n})} {\bar{P}^{*(n)}_\mu(\mu;q,t,s t^{1-n})} \]
- Branching rules for Macdonald polynomials
- Interpolation Macdonald polynomials
- Lifted BCn interpolation polynomials
- Koornwinder polynomials
- BCn interpolation polynomial in Macdonald polynomial basis
articles
- Rains, Eric M. “BCn-Symmetric Polynomials.” Transformation Groups 10, no. 1 (March 2005): 63–132. doi:10.1007/s00031-005-1003-y. http://arxiv.org/abs/math/0112035.
- Okounkov, A. “BC-Type Interpolation Macdonald Polynomials and Binomial Formula for Koornwinder Polynomials.” Transformation Groups 3, no. 2 (June 1998): 181–207. doi:10.1007/BF01236432.