"BCn interpolation polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 4개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 +
* introduced by Okounkov as an analogous objects to [[Interpolation Macdonald polynomials]]
 +
 +
 
===notation===
 
===notation===
* We define relations $\prec$ and $\succ$ such that $\kappa\prec\lambda$ (equivalently $\lambda\succ\kappa$) for two partitions iff $\lambda/\kappa$ is a vertical strip; that is, $\kappa_i\le \lambda_i\le \kappa_i+1$ for all $i$.
+
* We define relations <math>\prec</math> and <math>\succ</math> such that <math>\kappa\prec\lambda</math> (equivalently <math>\lambda\succ\kappa</math>) for two partitions iff <math>\lambda/\kappa</math> is a vertical strip; that is, <math>\kappa_i\le \lambda_i\le \kappa_i+1</math> for all <math>i</math>.
 
* we frequently use the product of the form
 
* we frequently use the product of the form
 
\[
 
\[
 
\prod_{(i,j)\in \lambda} f(i,j),
 
\prod_{(i,j)\in \lambda} f(i,j),
 
\]
 
\]
where $(i,j)\in \lambda$ means that $1\le i$ and $1\le j\le
+
where <math>(i,j)\in \lambda</math> means that <math>1\le i</math> and <math>1\le j\le
\lambda'_i$
+
\lambda'_i</math>
 
* let us define [[Generalized q-shifted factorials]]
 
* let us define [[Generalized q-shifted factorials]]
 
\begin{align}
 
\begin{align}
32번째 줄: 35번째 줄:
 
\prod_{1\le i\le l} (t^{1-i} x;q)_{\lambda_i}.
 
\prod_{1\le i\le l} (t^{1-i} x;q)_{\lambda_i}.
 
\end{align}
 
\end{align}
* $\bar{P}^{*(n)}_\lambda(\mu;q,t,s):=\bar{P}^{*(n)}_\lambda(q^{\mu_i} t^{n-i} s;q,t,s)$
+
* <math>\bar{P}^{*(n)}_\lambda(\mu;q,t,s):=\bar{P}^{*(n)}_\lambda(q^{\mu_i} t^{n-i} s;q,t,s)=\bar{P}^{*(n)}_\lambda(q^{\mu_1}t^{n-1},q^{\mu_2}t^{n-2},\cdots, q^{\mu_n}t^{0};q,t,s)</math>
  
 +
==definition==
 +
* Let <math>\lambda</math> be a partition with at most <math>n</math> parts
 +
* The BCn interpolation <math>\bar{P}^{*(n)}_\lambda(x_1,\dots,x_n;q,t,s)</math> is the unique polynomial in <math>\Lambda_{t,s}</math> satisfying the following conditions :
 +
# <math>\deg \bar{P}^{*(n)}_\lambda(x;q,t,s)\leq |\lambda|</math>
 +
# <math>\bar{P}^{*(n)}_\lambda(\mu;q,t,s)=0</math> if <math>\quad\lambda\not\subset\mu</math>
 +
# <math>\bar{P}^{*(n)}_\lambda(\lambda;q,t,s)=\dots</math> (normalization)
  
===properties===
 
* let $\bar{P}^{*(n)}_\lambda(\mu;q,t,s):=\bar{P}^{*(n)}_\lambda(q^{\mu_1}t^{n-1},q^{\mu_2}t^{n-2},\cdots, q^{\mu_n}t^{0};q,t,s)$
 
* extra vanishing
 
$$
 
\bar{P}^{*(n)}_\lambda(\mu;q,t,s)=0
 
\quad\lambda\not\subset\mu,
 
$$
 
  
 
==branching rule==
 
==branching rule==
86번째 줄: 88번째 줄:
 
==BCn q-binomial coefficient==
 
==BCn q-binomial coefficient==
 
* see [[BCn q-binomial coefficient]]
 
* see [[BCn q-binomial coefficient]]
$$
+
:<math>
 
{\lambda \brack \mu}_{q,t,s}
 
{\lambda \brack \mu}_{q,t,s}
 
:=
 
:=
 
\frac{\bar{P}^{*(n)}_\mu(\lambda;q,t,s t^{1-n})}
 
\frac{\bar{P}^{*(n)}_\mu(\lambda;q,t,s t^{1-n})}
 
{\bar{P}^{*(n)}_\mu(\mu;q,t,s t^{1-n})}
 
{\bar{P}^{*(n)}_\mu(\mu;q,t,s t^{1-n})}
$$
+
</math>
  
  
99번째 줄: 101번째 줄:
 
* [[Lifted BCn interpolation polynomials]]
 
* [[Lifted BCn interpolation polynomials]]
 
* [[Koornwinder polynomials]]
 
* [[Koornwinder polynomials]]
 +
* [[BCn interpolation polynomial in Macdonald polynomial basis]]
  
 
==articles==
 
==articles==
107번째 줄: 110번째 줄:
  
 
[[분류:symmetric polynomials]]
 
[[분류:symmetric polynomials]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 22:37 기준 최신판

introduction


notation

  • We define relations \(\prec\) and \(\succ\) such that \(\kappa\prec\lambda\) (equivalently \(\lambda\succ\kappa\)) for two partitions iff \(\lambda/\kappa\) is a vertical strip; that is, \(\kappa_i\le \lambda_i\le \kappa_i+1\) for all \(i\).
  • we frequently use the product of the form

\[ \prod_{(i,j)\in \lambda} f(i,j), \] where \((i,j)\in \lambda\) means that \(1\le i\) and \(1\le j\le \lambda'_i\)

\begin{align} C^+_\lambda(x;q,t)&:=\prod_{(i,j)\in \lambda} (1-q^{\lambda_i+j-1} t^{2-\lambda'_j-i} x)\\ &\phantom{:}= \prod_{1\le i\le l} \frac{(q^{\lambda_i} t^{2-l-i} x;q)} {(q^{2\lambda_i} t^{2-2i} x;q)} \prod_{1\le i<j\le l} \frac{(q^{\lambda_i+\lambda_j} t^{3-i-j} x;q)} {(q^{\lambda_i+\lambda_j} t^{2-i-j} x;q)},\\ C^-_\lambda(x;q,t)&:=\prod_{(i,j)\in \lambda} (1-q^{\lambda_i-j} t^{\lambda'_j-i} x)\\ &\phantom{:}= \prod_{1\le i\le l} \frac{(x;q)} {(q^{\lambda_i} t^{l-i} x;q)} \prod_{1\le i<j\le l} \frac{(q^{\lambda_i-\lambda_j} t^{j-i} x;q)} {(q^{\lambda_i-\lambda_j} t^{j-i-1} x;q)},\\ C^0_\lambda(x;q,t)&:=\prod_{(i,j)\in \lambda} (1-q^{j-1} t^{1-i} x)\\ &\phantom{:}= \prod_{1\le i\le l} (t^{1-i} x;q)_{\lambda_i}. \end{align}

  • \(\bar{P}^{*(n)}_\lambda(\mu;q,t,s):=\bar{P}^{*(n)}_\lambda(q^{\mu_i} t^{n-i} s;q,t,s)=\bar{P}^{*(n)}_\lambda(q^{\mu_1}t^{n-1},q^{\mu_2}t^{n-2},\cdots, q^{\mu_n}t^{0};q,t,s)\)

definition

  • Let \(\lambda\) be a partition with at most \(n\) parts
  • The BCn interpolation \(\bar{P}^{*(n)}_\lambda(x_1,\dots,x_n;q,t,s)\) is the unique polynomial in \(\Lambda_{t,s}\) satisfying the following conditions :
  1. \(\deg \bar{P}^{*(n)}_\lambda(x;q,t,s)\leq |\lambda|\)
  2. \(\bar{P}^{*(n)}_\lambda(\mu;q,t,s)=0\) if \(\quad\lambda\not\subset\mu\)
  3. \(\bar{P}^{*(n)}_\lambda(\lambda;q,t,s)=\dots\) (normalization)


branching rule

thm (3.9)

We have \[ \bar{P}^{*(n+m)}_\lambda(x_1,x_2,\dots x_n,t^{m-1} v,t^{m-2} v,\dots v;q,t,s) = \sum_{\substack{\mu\subset\lambda\\\ell(\mu)\le n}} \psi^{(B)}_{\lambda/\mu}(v,vt^m;q,t,s t^n) \bar{P}^{*(n)}_\mu(x_1,x_2,\dots x_n;q,t,s), \] where \[ \psi^{(B)}_{\lambda/\mu}(v,v';q,t,s) = \frac{ C^0_\lambda(s/v;q,t) C^0_\lambda(t/sv';1/q,1/t)} { C^0_\mu(s/v;q,t) C^0_\mu(t/sv';1/q,1/t)} P_{\lambda/\mu}(\left[\frac{v^k-v^{\prime k}}{1-t^k}\right];q,t) \]

cor (3.10)

We have \[ \bar{P}^{*(n+1)}_\lambda(x_1,x_2,\dots x_n,v;q,t,s) = \sum_{\substack{\mu'\prec\lambda'\\\mu_{n+1}=0}} \psi^{(b)}_{\lambda/\mu}(v;q,t,s t^n) \bar{P}^{*(n)}_\mu(x_1,x_2,\dots x_n;q,t,s), \] where \[ \psi^{(b)}_{\lambda/\mu}(v;q,t,s) = \psi_{\lambda/\mu}(q,t) \prod_{(i,j)\in \lambda/\mu} (v+1/v-q^{j-1} t^{1-i}s-q^{1-j}t^{i-1}/s) \]

BCn q-binomial coefficient

\[ {\lambda \brack \mu}_{q,t,s} := \frac{\bar{P}^{*(n)}_\mu(\lambda;q,t,s t^{1-n})} {\bar{P}^{*(n)}_\mu(\mu;q,t,s t^{1-n})} \]


related items

articles

  • Rains, Eric M. “BCn-Symmetric Polynomials.” Transformation Groups 10, no. 1 (March 2005): 63–132. doi:10.1007/s00031-005-1003-y. http://arxiv.org/abs/math/0112035.
  • Okounkov, A. “BC-Type Interpolation Macdonald Polynomials and Binomial Formula for Koornwinder Polynomials.” Transformation Groups 3, no. 2 (June 1998): 181–207. doi:10.1007/BF01236432.