"Slater 37"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==Note== | ==Note== | ||
− | * not checked | + | * not checked |
10번째 줄: | 10번째 줄: | ||
* [[Slater list|Slater's list]] | * [[Slater list|Slater's list]] | ||
− | * I(17) | + | * I(17) |
18번째 줄: | 18번째 줄: | ||
==Bailey pair 1== | ==Bailey pair 1== | ||
− | * Use the folloing | + | * Use the folloing<math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math> |
− | * Specialize | + | * Specialize<math>x=q^{3}, y=-q, z\to\infty</math>. |
− | * Bailey pair | + | * Bailey pair<math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math> |
28번째 줄: | 28번째 줄: | ||
==Bailey pair 2== | ==Bailey pair 2== | ||
− | * Use the following '''[Slater52-1] '''(4.2) | + | * Use the following '''[Slater52-1] '''(4.2) |
− | * Specialize | + | * Specialize<math>a=q^{2},d=q^2,e=q</math> |
− | * Bailey pair | + | * Bailey pair<math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math> |
38번째 줄: | 38번째 줄: | ||
==Bailey pair == | ==Bailey pair == | ||
− | * Bailey pairs | + | * Bailey pairs <math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math> <math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math> |
48번째 줄: | 48번째 줄: | ||
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math> | <math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math> | ||
− | * [[Bailey pair and lemma|Bailey's lemma]] | + | * [[Bailey pair and lemma|Bailey's lemma]]<math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math> ([http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)] was used to verify this)<math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math> |
− | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
88번째 줄: | 88번째 줄: | ||
==related items== | ==related items== | ||
− | * [[asymptotic analysis of basic hypergeometric series]] | + | * [[asymptotic analysis of basic hypergeometric series]] |
98번째 줄: | 98번째 줄: | ||
− | * [[2010년 books and articles]] | + | * [[2010년 books and articles]] |
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
111번째 줄: | 111번째 줄: | ||
==articles== | ==articles== | ||
− | * | + | * |
− | * [http://www.combinatorics.org/Surveys/ds15.pdf Rogers-Ramanujan-Slater Type identities] | + | * [http://www.combinatorics.org/Surveys/ds15.pdf Rogers-Ramanujan-Slater Type identities] |
− | ** McLaughlin, 2008 | + | ** McLaughlin, 2008 |
− | * [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type] | + | * [http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type] |
− | ** Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167 | + | ** Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167 |
− | * [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series] | + | * [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series] |
− | ** Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475 | + | ** Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475 |
− | * | + | * |
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet | ||
* [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/ | * [http://www.zentralblatt-math.org/zmath/en/ ]http://www.zentralblatt-math.org/zmath/en/ | ||
* [http://arxiv.org/ ]http://arxiv.org/ | * [http://arxiv.org/ ]http://arxiv.org/ | ||
* http://pythagoras0.springnote.com/ | * http://pythagoras0.springnote.com/ | ||
− | + | ||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:migrate]] | [[분류:migrate]] |
2020년 11월 13일 (금) 22:41 판
Note
- not checked
type of identity
- Slater's list
- I(17)
Bailey pair 1
- Use the folloing\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
- Specialize\(x=q^{3}, y=-q, z\to\infty\).
- Bailey pair\(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\)
Bailey pair 2
- Use the following [Slater52-1] (4.2)
- Specialize\(a=q^{2},d=q^2,e=q\)
- Bailey pair\(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
Bailey pair
- Bailey pairs \(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\) \(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)\(\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
q-series identity
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
- Bailey's lemma\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}\) (오일러의 오각수정리(pentagonal number theorem) was used to verify this)\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}\)
Bethe type equation (cyclotomic equation)
Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
a=1,d=1,e=1
The equation becomes \(1-x=x\).
\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)
dilogarithm identity
\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- Rogers-Ramanujan-Slater Type identities
- McLaughlin, 2008
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- [2]http://arxiv.org/
- http://pythagoras0.springnote.com/