|
|
(사용자 2명의 중간 판 15개는 보이지 않습니다) |
1번째 줄: |
1번째 줄: |
− | <h5>간단한 소개</h5>
| + | ==개요== |
| | | |
− | * 모든 자연수의 곱은 물론 발산함. | + | * 모든 자연수의 곱은 물론 발산 |
− | * 이것은 다만 리만제타함수를 이용한 물리(?)적인 답변임. | + | * 리만제타함수의 0에서의 미분값을 묻는 문제로 이해할 수 있음 |
− | * <math>\zeta'(0)=-\log{\sqrt{2\pi}}</math> (아래에서 증명함) | + | * <math>\zeta'(0)=-\log{\sqrt{2\pi}}</math> (아래에서 증명함) |
− | * <math>\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}</math> , <math>\zeta'(s)=-\sum_{n=1}^{\infty}\frac{\log n}{n^s}</math> | + | * <math>\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}</math> , <math>\zeta'(s)=-\sum_{n=1}^{\infty}\frac{\log n}{n^s}</math> |
− | * 여기서 (수학적으로는 말이 안되나 형식적으로)<br><math>\zeta'(0)=-\sum_{n=1}^{\infty}\log n</math><br><math>\prod_{1}^{\infty} n =\sqrt{2\pi}</math><br> | + | * 여기서 (형식적으로):<math>\zeta'(0)=-\sum_{n=1}^{\infty}\log n</math>:<math>\prod_{1}^{\infty} n =\sqrt{2\pi}</math> |
− | * 즉 모든 자연수의 곱은 (!?) <math>\sqrt{2\pi}</math> | + | * 즉 모든 자연수의 곱은 <math>\sqrt{2\pi}</math> (!?) |
| | | |
− |
| + | |
| | | |
− | <h5>증명에 앞서 알아야 할 사실들</h5>
| + | |
| + | ==증명에 앞서 알아야 할 사실들== |
| | | |
| * [[감마함수]] | | * [[감마함수]] |
− | * 리만제타함수의 함수방정식<br><math>\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}</math><br> | + | * [[리만제타함수]]의 함수방정식 |
− | | + | :<math>\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}</math> |
− |
| |
− | | |
− | <h5>증명</h5>
| |
− | | |
− | <math>\zeta(s)=\frac{\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)}=\frac{\pi^{s-1/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)}{\Gamma\left(\frac{s}{2}\right)}</math> | |
− | | |
− |
| |
− | | |
− | <math>f(s)=s\zeta(1-s)</math> 라 두자.
| |
− | | |
− |
| |
− | | |
− | <math>\zeta(s)=\frac{\pi^{s-1/2}\ \Gamma(\frac{1-s}{2})f(s)}{2\Gamma(\frac{s}{2}+1)}</math> 의 <math>s=0</math> 에서의 로그미분값을 계산하면, 다음을 얻는다.
| |
− | | |
− | <math>\frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}\frac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})}+\frac{f'(0)}{f(0)}-\frac{1}{2}\frac{\Gamma'(1)}{\Gamma(1)}=\log\pi-\frac{1}{2}(\psi(1)+\psi(\frac{1}{2}))+ \frac{f'(0)}{f(0)} </math>
| |
− | | |
− | 여기서 <math>\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}</math>
| |
− | | |
− |
| |
− | | |
− | <math>\frac{f'(0)}{f(0)}=-\gamma</math>, <math>\psi(1) = -\gamma\,\!</math>, <math>\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma</math>
| |
− | | |
− |
| |
− | | |
− | <math>\zeta(s)=\frac{1}{s-1}+\gamma+O((s-1)^2)</math> 를 이용하면, <math>s=0</math> 주변에서 <math>f(s)=-1+\gamma s+O(s^2)</math> .
| |
− | | |
− | [[감마함수]] 의 [[다이감마 함수(digamma function)|Digamma]] 함수 부분 참조.
| |
− | | |
− |
| |
− | | |
− | 따라서 다음값을 얻는다.
| |
− | | |
− | <math>\frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}(-\gamma-2\ln2-\gamma)-\gamma=\log 2\pi</math><br>
| |
− | | |
− | <math>\zeta(0)=-\frac{1}{2}</math> 이므로, <math>\zeta'(0)=-\log \sqrt{2\pi}</math>
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">상위 주제</h5>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | ==== 하위페이지 ====
| |
− | | |
− | * [[1964250|0 토픽용템플릿]]<br>
| |
− | ** [[2060652|0 상위주제템플릿]]<br>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실</h5>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사</h5>
| |
− | | |
− | * [[수학사연표 (역사)|수학사연표]]<br>
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">많이 나오는 질문과 답변</h5>
| |
− | | |
− | * 네이버 지식인<br>
| |
− | ** http://kin.search.naver.com/search.naver?where=kin_qna&query=
| |
− | ** http://kin.search.naver.com/search.naver?where=kin_qna&query=
| |
− | ** http://kin.search.naver.com/search.naver?where=kin_qna&query=
| |
− | ** http://kin.search.naver.com/search.naver?where=kin_qna&query=
| |
− | ** http://kin.search.naver.com/search.naver?where=kin_qna&query=
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 고교수학 또는 대학수학</h5>
| |
− | | |
− |
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 다른 주제들</h5>
| |
− | | |
− | * [[파이가 아니라 2파이다?]]<br><br>
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서 및 추천도서</h5>
| |
− | | |
− | * 도서내검색<br>
| |
− | ** http://books.google.com/books?q=
| |
− | ** http://book.daum.net/search/contentSearch.do?query=
| |
− | * 도서검색<br>
| |
− | ** http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
| |
− | ** http://book.daum.net/search/mainSearch.do?query=
| |
− | | |
− |
| |
− | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5>
| |
− | | |
− | * http://ko.wikipedia.org/wiki/
| |
− | * http://en.wikipedia.org/wiki/
| |
− | * http://www.wolframalpha.com/input/?i=
| |
− | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
| |
− | * http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
| |
− | * 다음백과사전 http://enc.daum.net/dic100/search.do?q=
| |
− | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]
| |
− | * [http://navercast.naver.com/science/list 네이버 오늘의과학]
| |
− | | |
− |
| |
| | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사</h5>
| + | |
| | | |
− | * 네이버 뉴스 검색 (키워드 수정)<br>
| + | ==증명== |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| + | 함수 <math>f(s):=s\zeta(1-s)</math>를 정의하자. |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| + | 이제 |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| + | :<math>\zeta(s)=\frac{\pi^{s-1/2}\ \Gamma(\frac{1-s}{2})f(s)}{2\Gamma(\frac{s}{2}+1)}</math> |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| + | 의 <math>s=0</math> 에서의 로그미분값을 계산하면, 다음을 얻는다 |
− | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
| + | :<math> |
| + | \frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}\frac{\Gamma'(\frac{1}{2})}{\Gamma(\frac{1}{2})}+\frac{f'(0)}{f(0)}-\frac{1}{2}\frac{\Gamma'(1)}{\Gamma(1)}=\log\pi-\frac{1}{2}\left(\psi(1)+\psi(\frac{1}{2})\right)+ \frac{f'(0)}{f(0)} |
| + | \label{sum} |
| + | </math> |
| + | 여기서 <math>\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}</math>는 [[다이감마 함수(digamma function)]]. |
| | | |
− |
| + | 함수 <math>\psi</math>에 대하여 다음이 성립한다 : |
| + | :<math>\psi(1) = -\gamma,\, \psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma</math> |
| | | |
− |
| + | 한편, <math>\zeta(s)=\frac{1}{s-1}+\gamma+O(s-1)</math> 를 이용하면, <math>s=0</math> 주변에서 <math>f(s)=-1+\gamma s+O(s^2)</math>임을 안다. 따라서 |
| + | :<math>\frac{f'(0)}{f(0)}=-\gamma.</math> |
| | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그</h5> | + | 얻어진 결과들을 \ref{sum}에 적용하여 다음을 얻는다. |
| + | :<math>\frac{\zeta'(0)}{\zeta(0)}=\log\pi-\frac{1}{2}(-\gamma-2\ln2-\gamma)-\gamma=\log 2\pi</math> |
| + | 이제 <math>\zeta(0)=-1/2</math>로부터 <math>\zeta'(0)=-\log \sqrt{2\pi}</math>를 얻는다. |
| | | |
− | * 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
| + | ==역사== |
− | * 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
| |
| | | |
− |
| + | * [[수학사 연표]] |
| | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이미지 검색</h5>
| + | |
| | | |
− | * http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
| + | ==관련된 항목들== |
− | * http://images.google.com/images?q= | + | * [[리만제타함수]] |
− | * [http://www.artchive.com/ http://www.artchive.com] | + | * [[스펙트럼 제타 함수]] |
| + | * [[파이가 아니라 2파이다?]] |
| + | * [[L-함수의 미분]] |
| | | |
− |
| |
| | | |
− | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">동영상</h5>
| + | ==관련논문== |
| + | * García, E. Muñoz, and R. Pérez Marco. “The Product Over All Primes Is 4π2.” Communications in Mathematical Physics 277, no. 1 (January 1, 2008): 69–81. doi:10.1007/s00220-007-0350-z. |
| | | |
− | * http://www.youtube.com/results?search_type=&search_query=
| + | [[분류:리만 제타 함수]] |
− | * <br>
| |