"Kazhdan-Lusztig conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* character formula
+
* 1979 conjectures
* positivity conjecture
+
** KL character formula
 +
** KL positivity conjecture
 +
 
 +
 
 +
==Hecke algebra==
 +
* new basis of Hecke algebra $\{\underline{H}_{x}| x\in W\}$
 +
$$
 +
\underline{H}_{x}=H_{x}+\sum_{y\in W, \ell(y)<\ell(x)} h_{y,x}H_{y}
 +
$$
 +
where $h_{y,x}\in v\mathbb{Z}[v]$ is so called the Kazhdan-Lusztig polynomial
 +
* positivity conjecture : $h_{x,y}\in \mathbb{Z}_{\geq 0}[v]$
 +
 
 +
 
 +
 
 +
==Hodge theory==
 +
* Poincare duality
 +
* hard Lefshetz theorem
 +
* Hodge-Riemann bilinear relation
 +
 
  
 
==exposition==
 
==exposition==
 
* [https://docs.google.com/file/d/0B8XXo8Tve1cxd2JGOUFfSG5nbjQ/edit Williamson- Kazhdan-Lusztig conjecture and shadows of Hodge theory]
 
* [https://docs.google.com/file/d/0B8XXo8Tve1cxd2JGOUFfSG5nbjQ/edit Williamson- Kazhdan-Lusztig conjecture and shadows of Hodge theory]
 
[[분류:Hecke algebra]]
 
[[분류:Hecke algebra]]

2013년 5월 30일 (목) 13:21 판

introduction

  • 1979 conjectures
    • KL character formula
    • KL positivity conjecture


Hecke algebra

  • new basis of Hecke algebra $\{\underline{H}_{x}| x\in W\}$

$$ \underline{H}_{x}=H_{x}+\sum_{y\in W, \ell(y)<\ell(x)} h_{y,x}H_{y} $$ where $h_{y,x}\in v\mathbb{Z}[v]$ is so called the Kazhdan-Lusztig polynomial

  • positivity conjecture : $h_{x,y}\in \mathbb{Z}_{\geq 0}[v]$


Hodge theory

  • Poincare duality
  • hard Lefshetz theorem
  • Hodge-Riemann bilinear relation


exposition