"Kazhdan-Lusztig conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
==introduction==
 
* The Kazhdan-Lusztig theory provides the solution to the problem of determining the irreducible characters in the  BGG category $\mathcal{O}$ of semisimple Lie algebras ([KL], [BB], [BK]).
 
* The theory was originally formulated in terms of the canonical bases (i.e., Kazhdan-Lusztig bases) of Hecke algebras.
 
* 1979 conjectures
 
** KL character formula
 
** KL positivity conjecture
 
* [[Kazhdan-Lusztig polynomial]]
 
  
 
 
==Hecke algebra==
 
* basis of Hecke algebra $\{H_{x}| x\in W\}$
 
* new basis of Hecke algebra $\{\underline{H}_{x}| x\in W\}$
 
$$
 
\underline{H}_{x}=H_{x}+\sum_{y\in W, \ell(y)<\ell(x)} h_{y,x}H_{y}
 
$$
 
where $h_{y,x}\in v\mathbb{Z}[v]$ is so called the Kazhdan-Lusztig polynomial
 
* positivity conjecture : $h_{x,y}\in \mathbb{Z}_{\geq 0}[v]$
 
 
==Hodge theory==
 
* Poincare duality
 
* hard Lefshetz theorem
 
* Hodge-Riemann bilinear relation
 
 
 
==related items==
 
* [[BGG category]]
 
* [[Hecke algebra]]
 
* [[Enumerative problems and Schubert calculus]]
 
* [[Flag manifold and flag variety]]
 
 
 
==exposition==
 
* [https://docs.google.com/file/d/0B8XXo8Tve1cxd2JGOUFfSG5nbjQ/edit Williamson- Kazhdan-Lusztig conjecture and shadows of Hodge theory]
 
 
 
==articles==
 
* [BB] A. Beilinson and J. Bernstein, Localisation de $\mathfrak g$-modules, C.R. Acad. Sci. Paris Ser. I Math. 292 (1981), 15-18.
 
* [BK] J.L.Brylinski and M.Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410.
 
* [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
 
 
[[분류:Hecke algebra]]
 

2020년 11월 14일 (토) 00:56 판