"Elements of finite order (EFO) in Lie groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 8개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* explicit formulas for the number of conjugacy classes of EFOs in Lie groups
 +
* appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of <math>G_2</math> holonomy
 +
* <math>N(G,m)</math> : number of conjugacy classes of <math>G</math> in <math>E(G,m)</math>
 +
* <math>N(G,m,s)</math> : number of conjugacy classes of <math>G</math> in <math>E(G,m,s)</math>
 +
 +
==EFO in unitary groups==
 +
===<math>U(n)</math>===
 +
* <math>N(G,m)= {n+m-1\choose m-1}</math>
 +
* <math>N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}</math>
 +
 +
===<math>SU(n)</math>===
 +
* <math>N(G,m)= \frac{1}{m}{n+m-1\choose m-1}</math> if <math>(n,m)=1</math>
 +
* <math>N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}</math> if <math>(n,m)=1</math>
 +
 +
 
==related items==
 
==related items==
 
* [[simple Lie groups and the Legendre symbol]]
 
* [[simple Lie groups and the Legendre symbol]]
 
+
* {{수학노트|url=중복조합의_공식_H(n,r)%3DC(n%2Br-1,r)}}
  
  
 
==computational resource==
 
==computational resource==
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxLU5vUzJRQUNGdnc/edit
 
* https://docs.google.com/file/d/0B8XXo8Tve1cxLU5vUzJRQUNGdnc/edit
 +
===OEIS===
 +
* type A http://oeis.org/A008610
 +
* type C http://oeis.org/A005993
 +
 +
 +
==questions==
 +
* http://mathoverflow.net/questions/86499/representations-of-quantum-groups-at-roots-of-unity
 +
 +
[[분류:Q-system]]
 +
[[분류:migrate]]

2020년 11월 14일 (토) 01:03 기준 최신판

introduction

  • explicit formulas for the number of conjugacy classes of EFOs in Lie groups
  • appears for the number of certain vacua in the quantum moduli space of M-theory compactifications on manifolds of \(G_2\) holonomy
  • \(N(G,m)\) : number of conjugacy classes of \(G\) in \(E(G,m)\)
  • \(N(G,m,s)\) : number of conjugacy classes of \(G\) in \(E(G,m,s)\)

EFO in unitary groups

\(U(n)\)

  • \(N(G,m)= {n+m-1\choose m-1}\)
  • \(N(G,m,s)=\frac{s}{n}{n\choose s}{m\choose s}\)

\(SU(n)\)

  • \(N(G,m)= \frac{1}{m}{n+m-1\choose m-1}\) if \((n,m)=1\)
  • \(N(G,m,s)= \frac{s}{nm}{n\choose s}{m\choose s}\) if \((n,m)=1\)


related items


computational resource

OEIS


questions